## Y YASKAWA

## J7 Drive Technical Manual



Models: JD and CIMR-J7AM Document Number: TM.J7.01

QUICK REFERENCE - J7 PARAMETERS

| PARAMETERS | FACTORY SETTING | USER SETTING | PARAMETERS | FACTORY SETTING | USER SETTING |
| :---: | :---: | :---: | :---: | :---: | :---: |
| n01 | 1 |  | n41 | 100 |  |
| n02 | 1 |  | n42 | 0 |  |
| n03 | 2 |  | n43 | 0.10 |  |
| n04 | 0 |  | n44 | 0 |  |
| n05 | 0 |  | n45 | 1.00 |  |
| n06 | 0 |  | n46 | 3 |  |
| n07 | 0 |  | n47 | 0 |  |
| n08 | 0 |  | n48 | 0 |  |
| n09 | 60.0 |  | n49 | 0.00 |  |
| n10 | 230/460 |  | n50 | 0.00 |  |
| n11 | 60.0 |  | n51 | 0.0 |  |
| n12 | 1.5 |  | n52 | 50 |  |
| n13 | 12/24 |  | n53 | 0.0 |  |
| n14 | 1.5 |  | n54 | 0.0 |  |
| n15 | 12/24 |  | n55 | 0 |  |
| n16 | 10.0 |  | n56 | 170 |  |
| n17 | 10.0 |  | n57 | 160 |  |
| n18 | 10.0 |  | n58 | 0.0 |  |
| n19 | 10.0 |  | n59 | 0 |  |
| n20 | 0 |  | n60 | 160 |  |
| n21 | 6.0 |  | n61 | 0.1 |  |
| n22 | 0.0 |  | n62 | 0 |  |
| n23 | 0.0 |  | n63 | 1.0 |  |
| n24 | 0.0 |  | n64 | Note 1 |  |
| n25 | 0.0 |  | n65 | Note 1 |  |
| n26 | 0.0 |  | n66 | 0.0 |  |
| n27 | 0.0 |  | n67 | 2.0 |  |
| n28 | 0.0 |  | n68 | 0 |  |
| n29 | 6.0 |  | n69 | 0 |  |
| n30 | 100 |  | n70 | 0 |  |
| n31 | 0 |  | n71 | 2 |  |
| n32 | Note 1 |  | n72 | 2 |  |
| n33 | 0 |  | n73 | 10 |  |
| n34 | 8 |  | n74 | 0 |  |
| n35 | 0 |  | n75 | 0 |  |
| n36 | 2 (2) |  | n76 | rdy |  |
| n37 | 5 (0) |  | n77 | 0 |  |
| n38 | 3 (3) |  | n78 | N/A |  |
| n39 | 6 (6) |  | n79 | 012 | N/A |
| n40 | 1 |  |  |  |  |

Note 1: Factory setting differs depending on drive capacity. See Appendix 3-1.

| RATED INPUT | CURRENT <br> RATING (AMPS) | NOMINAL HORSEPOWER | OLD DRIVE MODEL NO. | NEW DRIVE MODEL NO. CIMR-J7AM |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 3 \\ & 0 \\ & \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \hline 0.8 \\ & 1.6 \end{aligned}$ | $\begin{aligned} & \hline 1 / 8 \\ & 1 / 4 \end{aligned}$ | JDA001 JDA002 | $\begin{aligned} & \hline 20 \mathrm{P} 10 \\ & 20 \mathrm{P} 20 \end{aligned}$ |
|  | $3.0$ | $1 / 2$ | JDA003 | $20 \mathrm{P} 40$ |
|  | 8.0 | - 2 | JDA008 | 21P50 |
|  | 11.0 | 3 | JDA011 | 22P20 |
|  | 17.5 | 5 | JDA017 | 23 P70 |
| $\begin{aligned} & 4 \\ & 6 \\ & 0 \\ & 0 \end{aligned}$ | 1.2 | 1/2 | JDB001 | 40P20 |
|  | 1.8 | 3/4 | JDB002 | 40P40 |
|  | 3.4 | 1 \& 2 | JDB003 | 40P70 |
|  | 4.8 | 3 | JDB005 | 41P50 |
|  | 8.6 | 5 | JDB009 | 43P70 |

## WARNING

Do not touch circuit components until main input power has been turned OFF. Status indicator LEDs and Digital Operator display will be extinguished when the DC bus voltage is below 50 VDC. Wait at least one additional minute.

Do not connect or disconnect wires and connectors while the main input power is turned on.


The drive leaves the factory with parameters initialized for 2-Wire control (when using external Run/Stop signals). Before using the initialization function of constant n01, know your control wiring configuration:

10 = Factory 2-Wire Control Initialization (Maintained RUN Contact)
11 = Factory 3-Wire Control Initialization (Momentary START/STOP Contact)
Entering either Initialization code resets all parameters to factory settings, and automatically returns parameter n001 setting to " 1 ". If the drive is connected for 3-Wire control and this parameter is set to " 10 " (2-Wire Control Initialization), the motor may run in reverse direction WITHOUT A RUN COMMAND APPLIED. Equipment damage or personal injury may result.

## CAUTION

## Parameter n10 must be set to proper motor voltage.



## Always ground the drive using its ground terminal ( $\stackrel{\rightharpoonup}{\rightleftharpoons}$ ) (near the main circuit output terminals). See paragraph 1.4A, "Grounding".

Never connect main circuit output terminals T1 (U), T2 (V) \& T3 (W) to AC main circuit power supply.

## CAUTION

When drive is programmed for auto-restart ( $n 48=12$ " thru " 10 "), the motor may restart unexpectedly - personal injury may result.


Wiring should be performed only by qualified personnel.
Always ground the drive using ground terminal ( ). See paragraph 1.4C, "Grounding".
Verify that the rated voltage of the drive matches the voltage of the incoming power.
Never connect main circuit output terminals T1, T2, and T3 to AC main circuit power supply.
All parameters have been factory set. Do not change their settings unnecessarily.
Do not perform a "HIPOT" or withstand voltage test on any part of the drive. Equipment uses semiconductors and is vulnerable to high voltage.

The Control PCB employs CMOS ICs which are easily damaged by static electricity. Use proper electrostatic discharge (ESD) procedures when handling the Control PCB. Never touch the printed control board (PCB) while the main input power is turned on.

Any modification of the product by the user is not the responsibility of Yaskawa, and will void the warranty.

Do not remove the Digital Operator or change dipswitch SW8 or rotary switch SW7 unless the main input power is turned OFF.

This drive is not suitable for use on a circuit capable of delivering more than 18,000 RMS symmetrical amperes at either 250 volts maximum or 480 volts maximum.

## J7 Simplified Startup Procedure

This procedure is a simplified step by step guide to installing, programming, and using the J7 drive. It highlights several common installation configurations. Detailed information on all features of this drive can be found in the Technical Manual.

## INSTALLATION

1. Be certain your input voltage source, motor and drive nameplates are all marked either 230 V or 460 V . Other voltages can be used, but require additional programming, see technical manual. CAUTION: Verify that the input voltage matches the Drive's nameplate BEFORE applying power or severe damage will result.
2. Mount Drive on a vertical surface with adequate space for air circulation (4.7" above and below, 1.2" on each side).
3. Remove front cover using the screw in the lower left corner, then connect power and ground wires as shown.

CAUTION: BE CERTAIN YOU CONNECT INPUT POWER TO TERMINALS L1, L2, AND L3 ONLY, OR SERIOUS DAMAGE WILL RESULT. CONNECT MOTOR TO TERMINALS T1, T2, AND T3 ONLY.
4. Replace cover and apply input power digital operator shows "0.0"; The FREF LED is on and the RUN LED is flashing. Press the DSPL key until the LO/RE LED is on. Press the UP ARROW button until the display shows "Lo", then press the DSPL button until the FREF LED is on. Rotate the potentiometer on the front of the digital operator until the display shows "6.0". Press the RUN button and note the direction of motor rotation. If rotation is incorrect, remove power, wait for the display lights to go out, then switch wires between terminals T1 and T2. Replace the front cover and apply input power.


## 5. Digital Operator

The DSPL button cycles through all of the quick start LEDs.
To access a parameter, press the DSPL button until the PRGM LED is on. Use the UP and DOWN keys until the desired parameter number is displayed, then press ENTER. Use the UP and DOWN keys to adjust the value then press ENTER then DSPL.

Before the drive will accept a RUN command, one of the following LEDs must be on: FREF, FOUT, IOUT, MNTR, or F/R. For more specific information on the digital operator, see the Tech. Manual, Section 4.
6. Choose a configuration from Table 1 below. Each example listed below contains a control wiring diagram, operation explanation, and all necessary programming. The drive can be controlled in many more ways than is described in these examples.

Table 1: Drive Configuration Examples

| Sequence* <br> Source <br> (Run / Stop) | Reference* <br> Source <br> (Motor Speed) | Description |
| :---: | :---: | :--- |
| Digital Operator | Digital Operator | This method requires no control wiring connections to the drive. It is <br> most often used during startup of the drive. |
| 2-wire | $4-20 \mathrm{~mA}$ | With this method the drive can be started and stopped from a remote <br> source, and the reference comes from a remote 4-20 mA source <br> such as a PLC. |
| 3-wire | Speed <br> Potentiometer | With this method, remote pushbuttons start and stop the drive and the <br> reference comes from a speed control (potentiometer). |

7. Control Terminal Wiring - Remove power and wait for all LEDs to go out before making control terminal connections. Control wiring should be sized 16 to 20 AWG. Control wiring should be shielded, with the shield wire connected to the ground terminal(골, which is located towards the left

Control Terminals
 side of the aluminum heat sink.

## Example 1: Sequence \& Reference From The Digital Operator



When the Drive is set up with the sequence and the reference coming from the digital operator, it is in "Local" control. Local control is often used during startup to verify motor operation, rotation, etc. The Drive can be temporarily placed in "Local" control simply by using the LO/RE quick start LED. If power is removed and then restored, the Drive will come up in the "Remote" mode.

The Drive can be programmed so that even if power is lost, the drive will come up in the local mode (see Table 2 below).

## OPERATION:

- The frequency reference comes from the digital operator pot.
- The drive can be started by pressing the RUN key on the digital operator.
- The drive can be stopped by pressing the STOP key on the digital operator.
- The direction of the motor can be changed regardless of motor speed by using F/R quick start LED.

Table 2: Programming required for "Local" mode

| Parameter | Display | Description |
| :---: | :---: | :--- |
| n02 | 0 | This parameter sets the sequence (start/stop) to "Local" mode. |
| n03 | 0 | This parameter sets the reference (motor speed) to come from the <br> digital operator potentiometer (local). |
| n32 | Set Motor F.L.A. | Enter the motor's full load amps (as shown on the motor <br> nameplate). |
| Quick Start <br> LED | F/R | The motor direction can be changed regardless of motor speed <br> using this quick start LED. |

## Example 2: Remote Sequence (2-Wire) \& Remote Reference (4-20 mA)



This configuration is used when the start \& stop signals and the frequency reference come from a remote source, such as a PLC. It can also be used with a maintained switch when it is desirable to have the Drive restart on restoration of power. It should not be used where safety of attending personnel might be threatened by a restart.

## OPERATION:

- Close (K1) to Run Forward.
- Close (K2) to Run Reverse.
- If both (K1) \& (K2) are closed, the drive stops and displays the error message: "EF".
- Frequency reference is proportional to the signal level at Terminal FI. $4 \mathrm{~mA}=0 \mathrm{~Hz}, 12 \mathrm{~mA}=30 \mathrm{~Hz}, \& 20 \mathrm{~mA}=60 \mathrm{~Hz}$.
- If the drive is put in the "Local" mode using the LO/RE quick start LED, the drive will behave the same as illustrated in Example 1.


Table 3: Programming Required For Remote 2-wire Sequence \& Remote (4-20 mA) Reference

| Parameter | Display | Description |
| :---: | :---: | :--- |
| n01 | Password <br> 10 | The drive will perform a 2-wire reset. <br> CAUTION: Setting this value will reset all parameters to their <br> original factory settings (all previous adjustments will be lost) <br> When the drive completes the reset, this parameter returns to a <br> value of 1. |
| n03 | 3 | This parameter sets terminal FR to be a 4-20mA input. NOTE: <br> Switch (SW8) must be closed ("on"). Prying off the cover using a <br> small screwdriver as shown in the diagram above allows access to <br> switch (SW8). |
| n32 | Set Motor FLA | Enter the motor's full load amps (as shown on the motor <br> nameplate). |

## Example 3: Remote Sequence (3-Wire) \& Speed Potentiometer



This configuration is best when a person rather than an external controller (PLC, relay, etc.) controls the Drive. Both potentiometers ((R1) \& (R2)) should have a resistance value between $2000 \Omega$ and $3000 \Omega$ and be rated for at least 1 Watt. The trim pot is optional, but without it the manual speed pot will output $10 \mathrm{~V}(60 \mathrm{~Hz})$ at just three-quarters of its rotation.

## OPERATION:

- Close pushbutton (PB1) momentarily while pushbutton (PB2) is closed and the drive will start. Pushbutton (PB1) does NOT need to be maintained.
- Open pushbutton (PB2) at any time and the drive will stop.
- If switch (SW1) is open the drive will run in the forward direction. If switch (SW1) is closed, the drive will run in the reverse direction. Switch (SW1) can be operated with the drive running at any speed.
- Frequency reference is proportional to the signal level at Terminal FV.
$0 \mathrm{~V}=0 \mathrm{~Hz}, 5 \mathrm{~V}=30 \mathrm{~Hz}, \& 10 \mathrm{~V}=60 \mathrm{~Hz}$.
- If the drive is put in the "Local" mode using the LO/RE quick start LED, the drive will behave the same as illustrated in Example 1.

Table 4: Programming Required For Remote 3-wire Sequence \& Speed Pot Reference

| Parameter | Display | Description |
| :---: | :---: | :--- |
| n01 | 11 | The drive will perform a 3-wire reset. <br> CAUTION: Setting this value will reset all parameters to their <br> original factory settings (all previous adjustments will be lost) <br> When the drive completes the reset, this parameter returns to a <br> value of 1. |
| n32 | Set Motor FLA | Enter the motor's full load amps (as shown on the motor <br> nameplate). |

After the programming is complete, the trim pot needs to be calibrated. Press DSPL until the FREF quick start LED is illuminated. Turn the Speed Pot (R1) all the way up. Adjust the trim pot (R2) so that the "FREF" display is just flickering between 59.9 Hz and 60.0 Hz . This completes the trim pot calibration.

## Sequence and Reference Explained

Sequence - refers to how the Drive is started, stopped, and told which direction to run. When the sequence comes from the digital operator (local), the drive is started and stopped using the "RUN" and "STOP" keys on the digital operator, and direction is given via the "FWD/REV" key. Sequence can also come from the Drive's control terminals (remote) using either two-wire or three-wire control. The sequence inputs to the Drive do NOT require any outside voltages to activate them. Instead, contact closures (either from switches, relay contacts or open collector circuits) activate the sequence inputs. Other sequence sources are available, consult the Technical Manual for details.

Two-wire sequence - utilizes a "maintained" switch or relay contact. It is used on applications where it is desirable to have the Drive restart on restoration of power. It should not be used where safety of attending personnel might be threatened by a restart. This method is generally restricted to unattended fans \& pumps, or where another controller is entrusted with the decision to restart. Direction is controlled by maintaining either a forward run or a reverse run command.

Three-wire sequence - utilizes "momentary" buttons or switches. This control scheme emulates the traditional 3 -wire motor starter control. A momentary closure of a normally open run switch latches the drive in the RUN mode (STOP switch must be closed or the drive will not accept the momentary RUN command). A momentary opening of the normally closed STOP switch unlatches RUN mode bringing the drive to a stop. The three-wire sequence is used where it would be dangerous for the Drive to restart after a power outage. This method requires an intentional restart, as the RUN command is unlatched immediately on loss of power. Direction is


3-Wire Sequence determined by another maintained contact closure (closed $=$ reverse).

Reference - The frequency reference tells the Drive how fast to run the motor. There are several source options for the frequency reference. First, the frequency reference can come from the digital operator (local). Simply put, the motor speed can be entered into the keypad. Second, the frequency reference can come from an analog signal (remote), such as 0 to 10 Volts DC. When 0 Volts is applied to the Drive, the Drive will run at zero speed. When 10 V is applied to the Drive, it will run at full speed. Apply anything in between and the Drive will run at that corresponding frequency ( $2.5 \mathrm{VDC}=25 \%$ speed $=15 \mathrm{~Hz}$ ). Other reference sources are available, consult the Technical Manual for details.

Local Control - is when the sequence and/or reference comes from the digital operator
Remote Control - is when the sequence and/or reference comes from the control terminals.
PARAGRAPH
SUBJECTPAGE
QUICK REFERENCE FOR PARAMETERS Inside Cover
CURRENT RATINGS AND HORSEPOWER RANGE .....
WARNINGS \& CAUTIONS ..... ii
SIMPLIFIED STARTUP PROCEDURE ..... iii
1
RECEIVING / INSTALLATION ..... 1-1
1.1 General ..... 1-1
1.2 Receiving ..... 1-1
1.3 Physical Installation ..... 1-1
1.4 Electrical Installation ..... 1-4
2 INITIAL START-UP ..... 2-1
2.1 Pre-Power Checks ..... 2-1
2.2 Startup Procedure ..... 2-2
3 OPERATION AT LOAD ..... 3-1
4DIGITAL OPERATOR4-1
4.1 General ..... 4-1
4.2 Digital Operator ..... 4-1
4.3 Status Indicator LEDs ..... 4-3
4.4 Monitor Displays ..... 4-3
5 PROGRAMMABLE FEATURES ..... 5-1
5.1 General ..... 5-1
5.2 Accel/Decel Time ..... 5-2
5.3 Accel/Decel: S-Curve Characteristics ..... 5-3
5.4 Auto-Restart ..... 5-4
5.5 Carrier Frequency ..... 5-5
5.6 Critical Frequency Rejection ..... 5-6
5.7 DC Injection Braking ..... 5-7
5.8 Frequency Reference Bias/Gain (Analog) ..... 5-8
5.9 Frequency Reference Upper and Lower Limits ..... 5-9
5.10 Frequency Reference Retention ..... 5-9
$5.11 \quad$ Frequency Reference Selection ..... 5-10
5.12 Jog Reference ..... 5-12
5.13 Local/Remote Reference and Sequence Selection ..... 5-13
5.14 Modbus Control (Optional) ..... 5-15
5.15 Momentary Power Loss Ride-Thru ..... 5-19
5.16 Multi-Function Analog Monitor Output (Term. AM and AC) ..... 5-19
5.17 Multi-Function Input Terminals (Term. S1-S5) ..... 5-20
5.18 Multi-Function Output Terminals (Term. MA, MB, MC) ..... 5-26
5.19 Overtorque Detection ..... 5-28

## CONTENTS - Continued

## PARAGRAPH

SUBJECT

## PAGE

5.20
Reset Codes: 2-Wire, 3-Wire Initialization5-30
5.21 Slip Compensation ..... 5-31
5.22 Stall Prevention ..... 5-32
5.23 Stopping Method ..... 5-33
5.24 Thermal Overload Protection ..... 5-34
5.25 Torque Compensation ..... 5-35
5.26 V/f Pattern ..... 5-36
5.27 Copy Function ..... 5-38
6 FAULT DIAGNOSIS AND CORRECTIVE ACTIONS ..... 6-1
6.1 General ..... 6-1
Appendix 1 LISTING OF PARAMETERS ..... A1-1
Appendix 2 SPECIFICATIONS ..... A2-1
Appendix 3 CAPACITY RELATED PARAMETERS ..... A3-1
Appendix 4 PERIPHERAL DEVICES ..... A4-1
Appendix 5 J7 DIMENSIONS ..... A5-1
Index ..... I-1

## Section 1. RECEIVING AND INSTALLATION

### 1.1 GENERAL

The J 7 drive is a pulse width modulated general purpose AC drive which generates an adjustable voltage/frequency, three phase output for speed control of most conventional squirrel cage induction motors. Automatic stall prevention and voltage boost prevents nuisance tripping during load or line side transient conditions. The Drive will not induce any voltage line notching distortion back to the utility line and maintains a displacement power factor of not less than 0.98 throughout its speed range.

When properly installed, operated and maintained, the Drive will provide a lifetime of service. It is mandatory that the person who operates, inspects, or maintains this equipment thoroughly read and understand this manual before proceeding.

### 1.2 RECEIVING

The Drive is thoroughly tested at the factory. After unpacking, verify the part numbers with the purchase order (invoice). Any damages or shortages evident when the equipment is received must be reported immediately to the commercial carrier who transported the equipment. Assistance, if required, is available from your sales representative.
If the Drive will be stored after receiving, keep it in its original packaging and store according to storage temperature specifications in Appendix 2.

### 1.3 PHYSICAL INSTALLATION

Location of the Drive is important to achieve proper performance and normal operating life. The Drive should be installed in an area where it will be protected from:

- Direct sunlight, rain or moisture.
- Corrosive gases or liquids.
- Vibration, airborne dust or metallic particles.

When preparing to mount the Drive, lift it by its base, never by the front cover. For effective cooling, as well as proper maintenance, the Drive must be installed on a flat, non-flammable vertical surface (wall or panel) using four mounting screws. There MUST be a MINIMUM 3.9 in. clearance above and below the Drive to allow air flow over the heat sink fins. A minimum 1.2 in . clearance is required on each side on the Drive.

Make sure air entering the Drive is below $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ by adding a fan or other cooling device, if needed. See environmental specifications in Appendix 2.


Figure 1-1. Component Identification (Sheet 1 of 2)


Figure 1-1. Component Identification (Sheet 2 of 2)

### 1.4 ELECTRICAL INSTALLATION

The Drive leaves the factory with all parameters set for 2-Wire external reference control. Figure 1-5 must be used for all external connections.

To use the Drive in a 3-Wire application, Drive parameters n01, n02, and n03 must be reprogrammed, using the Digital Operator. Figure 1-6 must then be used for all external connections.

## A. Main Circuit Input/Output

Complete wire interconnections according to Tables 1-1 and 1-2; observe the following:

- Use 600 V vinyl-sheathed wire $\left(75^{\circ} \mathrm{C}\right.$ copper) or equivalent. Wire size should be determined considering voltage drop of leads.
- NEVER connect AC main power to output terminals T1 ( U ), T2 (V), and T3 ( W ).
- NEVER allow wire leads to contact metal surfaces. Short-circuit may result.
- NEVER connect power factor correction capacitors or noise filters to Drive output.
- SIZE OF WIRE MUST BE SUITABLE FOR CLASS I CIRCUITS.
- Use only factory supplied installation instructions to install optional dynamic braking resistors. Failure to do so may cause equipment damage or personal injury.
- Motor lead length should NOT EXCEED 164 feet ( 50 meters), and motor wiring should be run in a separate conduit from the power wiring. If lead length must exceed this distance, reduce carrier frequency and consult factory for proper installation procedures.
- Use UL listed closed loop connectors or CSA certified ring connectors sized for the selected wire gauge. Install using the correct crimp tool recommended by the connector manufacturer.


Table 1-2. Main Circuit Terminal Functions and Voltages

| TERMINAL | FUNCTION | VOLTAGE / SIGNAL LEVEL |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { L1 (R) } \\ & \text { L2 (S) } \\ & \text { L3 (T) } \end{aligned}$ | Main circuit input power supply | 230V Drive: 200 / 208 / $220 / 230 \mathrm{~V}$ at $50 / 60 \mathrm{~Hz}$ 460V Drive: 420 / $440 / 460 / 480 \mathrm{~V}$ at $50 / 60 \mathrm{~Hz}$ |
| $\begin{aligned} & \text { T1 (U) } \\ & \text { T2 (V) } \\ & \text { T3 (W) } \end{aligned}$ | Main circuit output | 230V Drive: 0-200 / 208/220/230V <br> 460V Drive: $0-400 / 440 / 460 / 480 \mathrm{~V}$ |
| $\begin{aligned} & +1 \\ & +2 \end{aligned}$ | DC Reactor terminals |  |
| - | DC Bus terminals (+1 \& -) |  |
| $\stackrel{1}{\square}$ | Ground terminal (100 ohms or less) | ---- |

## B. Control Circuit

All basic control circuit (signal) interconnections are shown in the appropriate diagram:

- Interconnections for external two-wire control in combination with the Digital Operator are shown in Figure 1-5 (for 230V or 460V rated drives).
- Interconnections for external three-wire control in combination with the Digital Operator are shown in Figure 1-6 (for 230 V or 460 V rated drives).

Make wiring connections according to Figures 1-1 thru 1-6 and Table 1-3, observing the following :

- Signal Leads : Terminals S1-S5 \& SC; FS, FR, \& FC; and AM \& AC.
- Control Leads : Terminals MA, MB \& MC.
- Power Leads : Input Terminals L1 (R), L2 (S), and L3 (T), and Output Terminals T1 (U), T2 (V), and T3 (W).
- Use twisted shielded or twisted-pair shielded wire (20-16 AWG (0.5-1.25mm²)) for control and signal circuit leads. Use twisted shielded or twisted-pair shielded wire (20-14 AWG $\left(0.5-2 \mathrm{~mm}^{2}\right)$ ) for shield sheath terminal (terminal $\rightleftharpoons$ ). When using shielded wire, the shield sheath MUST be connected at the Drive ONLY (terminal $\uparrow$ ). The other end should be dressed neatly and left unconnected (floating). See Figure 1-2.
- Signal leads (see above) must be separated from control leads, main circuit leads L1 (R), L2 (S), L3 (T), T1 (U), T2 (V), T3 (W), and any other power cables, to prevent erroneous operation caused by noise interference.
- Lead length should NOT EXCEED 164 feet ( 50 meters). Wire sizes should be determined considering the voltage drop.



## C. Grounding

- The Drive must be solidly grounded using main circuit ground terminal $\geqslant$. Ground resistance should be 100 ohms or less. Select lead size suitable for size of terminal screw. Make the length as short as possible.
- NEVER ground the Drive in common with welding machines, motors, or other large-current electrical equipment.
- Where several Drives are used, ground each directly or daisy-chain to the ground pole(s). DO NOT FORM A LOOP WITH THE GROUND LEADS.


CORRECT


CORRECT


NOT
ACCEPTABLE

Table 1-3. Terminal Functions and Signals of Control Circuit

| DATA | FUNCTION | DESCRIPTION* |
| :--- | :--- | :--- |
| S1 | Input 1 | Factory setting is " Forward Run/Stop " (1). <br> (Forward run when closed, stop when open) |
| S2 | Multi-Function-Input 2 | Factory setting is " Reverse Run/Stop " (1). <br> (Reverse Run when closed, stop when open) |
| S3 | Multi-Function-Input 3 | Factory setting is " Fault Reset " (1) |

NOTES:

1. These inputs have factory settings based on 2-wire reset. For 3-wire reset definitions, see Figure 1-6.

## D. Auxiliary Input and Output Power Option Devices

Figure $1-3$ is a factory guideline for proper wiring practices and relative locations within the electrical path from the line to the load. It does not imply what devices are needed for a particular application, nor does it show what devices were shipped with a particular order. Therefore, disregard those items in the diagram which are not being used in your installation. However, it is recommended that an input or DC reactor be used with all ratings when wired to a source of 600 KVA or greater. Mount all power option devices as close to the Drive, and keep electrical connections as short as possible.

DO NOT run input and output wiring in the same conduit.


Figure 1-3. Customer Connection Diagram For Isolation Transformers, Input Reactors, Input RFI Filters, DC Reactors, Output Reactors and Output RFI FIIters

## E. Conformance to European EMC Directive

In order to conform to EMC standards, the following methods are required for line filter application, cable shielding and Drive installation.

The line filter and Drive must be mounted on the same metal plate. The filter should be mounted as close to the Drive as practical. The cable must be kept as short as possible and the metal plate should be securely grounded. The ground of the line filter and the Drive must be bonded to the metal plate with as much bare-metal contact as possible.

For main circuit input cables, a screened cable is recommended within the panel and is also suggested for external connections. The screen of the cable should be connected to a solid ground. For the motor cables, a screened cable (max. 20 m ) must be used and the screen of the motor cable should be connected to ground at both ends by a short connection, again using as much bare-metal contact as practical.

For a more detailed explanation, refer to Yaskawa document TD 4077, "Installation Guidelines For EMC Directive using Yaskawa AC Drive Products."

Table 1-4 and Figure 1-4 show the line filter list for EMC standards and the installation/wiring of the Drive and line filter.

Table 1-4. Line Filters for EMC Standards

| Old Drive Model No. | New Drive Model No. CIMR-J7AM | Line Filter |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Part Number FILOO | Rated Current (A) | $\begin{gathered} \text { Mass } \\ \text { lbs. (kg) } \end{gathered}$ | Dimensions in in. (mm) $L \times W \times D^{(1)}$ |
| JDA001 | 20P10 | 1093 | 10 | 1.8 (0.8) | 7.64 (194) x 3.23 (82) x 1.97 (50) |
| JDA002 | 20P20 |  |  |  |  |
| JDA003 | 20P40 |  |  |  |  |
| JDA005 | 20P70 |  |  |  |  |
| JDA008 | 21P50 | 1094 | 16 | 2.2 (1.0) | 6.65 (169) $\times 4.37$ (111) $\times 1.97$ (50) |
| JDA011 | 22P20 |  |  |  |  |
| JDA017 | 23P70 | 1102 | 26 | 2.4 (1.1) | 6.85 (174) $\times 5.67$ (144) $\times 1.97$ (50) |
| JDB001 | 40P20 | 1103 | 5 | 2.2 (1.0) | 6.65 (169) x 4.37 (111) $\times 1.77$ (45) |
| JDB002 | 40P40 |  |  |  |  |
| JDB003 | 40P70 | 1104 | 10 | 2.2 (1.0) | 6.65 (169) $\times 4.37$ (111) $\times 1.77$ (45) |
| JDB005 | 41P50 |  |  |  |  |
| JDB009 | 43P70 | 1105 | 20 | 2.4 (1.1) | $6.85(174) \times 5.67$ (144) $\times 1.97(50)$ |

${ }^{(1)} \mathrm{D}$ is the distance the filter will extend outward from the surface of the metal plate.


Figure 1-4. Installation of Line Filter and Drive

## F. Interconnection -2 Wire

## NOTES FOR FIGURE 1-5

*     - Indicates components not supplied.
© - Main circuit terminal.
O - Indicates control circuit terminal.
( ) - Indicates alternate terminal marking, ie., (R) and L1.
- Function labels shown for these terminals are determined by factory settings of n36 through n39 (see paragraph 5.17).
- Function labels shown for these terminals are determined by factory setting of n40 (see paragraph 5.18).
-     - Function label shown for this terminal is determined by factory setting of no (see paragraph 5.11A).
- Function labels shown for these terminals are determined by factory setting of $n 44$ (see paragraph 5.16).

1. Insulated twisted shielded wire is required.

2-conductor \#18 GA. (Belden \#8760 or equivalent).
3-conductor \#18 GA. (Belden \#8770 of equivalent)
Connect shield ONLY AT Drive END (ground terminal
). Stub and isolate other end
2. +12 V voltage output current capacity of control terminal FS is 20 mA max.
3. The Drive does not include overload 1OL; it is a separate item. If local code requires separate mechanical overload protection, an overload relay should be installed, interlocked with the Drive as shown. It should be the manual reset type to prevent automatic restart following a motor fault and subsequent contact reclosure after cool down. For Canadian installations, overload 1OL is to be provided in accordance with the Canadian Electrical Code, part 1 and NBC.
4. Customer to connect terminalto earth ground.
5. If the Digital Operator is used, remote operators, which duplicate functions of its command keys may not be required. See Figure 4-1.
6. An optional DC reactor may be added for harmonic attenuation, if needed. See separate instruction sheet for wiring.
7. If application does not allow reverse operation, parameter n05, Reverse Run Prohibit Selection, should be set to " 1 " (Reverse Run Disabled), and the Reverse Run/Stop input can be eliminated.


Figure 1-5. Standard Connections (2-Wire Control) (Parameter n01 set to "10")
H. Inspection. After wiring is complete, verify that:

All wiring is correctly installed.
Excess screws and wire clippings are removed from inside of unit.
Screws are securely tightened.
Exposed wire does not contact other wiring or terminals.

## CAUTION

If a FWD or REV run command is given from the control circuit terminal when the operation method selection function ( $n 02$ ) is set to " 1 " and the "LO/RE" selection is set to "RE", the motor will start automatically as soon as power is applied to the main circuit.

## G. Interconnection-3 Wire

## NOTES FOR FIGURE 1-6

*     - Indicates components not supplied.- Main circuit terminal.
$\bigcirc$ - Indicates control circuit terminal.
( ) - Indicates alternate terminal marking, i.e., (R) and L1.
- Function labels shown for these terminals are determined by factory settings of n36 through n39 (see paragraph 5.17).
- Function labels shown for these terminals are determined by factory setting of n40 (see paragraph 5.18).
-     - Function label shown for this terminal is determined by factory setting of $\boldsymbol{n} 03$ (see paragraph 5.11A)
- Function labels shown for these terminals are determined by factory setting of $n 44$ (see paragraph 5.16).

1. Insulated twisted shielded wire is required.

2-conductor \#18 GA. (Belden \#8760 or equivalent)
3-conductor \#18 GA. (Belden \#8770 or equivalent)
Connect shield only at drive end (ground terminal ( $\rightleftharpoons$ ) ). Stub and isolate other end
2. +12 V voltage output current capacity of control terminal FS is 20 mA max.
3. The Drive does not include overload 1OL; it is a separate item. It may not be required; see page 5.34. The contact from the separately supplied overload relay should be interlocked with the Drive as shown. It should be the manual reset type to prevent automatic restart following a motor fault and subsequent contact reclosure after cool down. For Canadian installations, overload 1OL is to be provided in accordance with the Canadian Electrical Code, Part 1 and NEC.
4. Customer to connect ground terminal ( $\rightleftharpoons$ ) to earth ground
5. If Digital Operator is used, remote operators which duplicate functions of its command keys (see Figure 4-1) may not be required.
6. An optional DC reactor may be added for harmonic attenuation, if needed; see separate instruction sheet for wiring.
7. If application does not allow reverse operation, parameter n05, Reverse Run Prohibit Selection, should be set to " 1 " (Reverse Run Disabled) and Fwd/Rev input can be eliminated.

## CAUTION

> Parameter n37 must be set to " 0 ", AND parameter n01 must be set to " 11 ". Resetting drive parameter n01 to " 10 " may cause the motor to run in reverse direction WITHOUT A RUN COMMAND, and possibly result in equipment damage or personal injury.


Figure 1-6. Standard Connections (3-Wire Control) (Parameter n01 set to "11")
H. Inspection. After wiring is complete, verify that:

All wiring is correctly installed.
Excess screws and wire clippings are removed from inside of unit.
Screws are securely tightened.
Exposed wire does not contact other wiring or terminals.

## CAUTION

If a FWD or REV run command is given from the control circuit terminal when the operation method selection function ( $n 02$ ) is set to " 1 " and the "LO/RE" selection is set to "RE", the motor will start automatically as soon as power is applied to the main circuit.

## Section 2. INITIAL START-UP

### 2.1 PRE-POWER CHECKS

- Verify wires are properly connected and no erroneous grounds exist.
- Remove all debris from the enclosure, such as loose wire clippings, metal shavings, etc.
- Verify all mechanical connections are tight.
- Verify motor is not connected to load.
- Apply input power only after the front cover is in place. DO NOT remove the front cover or Digital Operator while input power is on.

IMPORTANT: 2-wire or 3-wire sequence selection must be made prior to any other adjustments (Parameter n01).

Table 2-1. Startup Procedure

| DESCRIPTION | KEY SEQUENCE | DIGITAL OPERATOR DISPLAY |
| :---: | :---: | :---: |
| Set motor rated current. (This can be obtained from the nameplate of the motor.) | Press DSPL key until the LED is lit on the digital operator. <br> Press and hold $\square$ $\wedge$ until n32 is displayed on the digital operator. <br> Then press <br> Use the $\square$ $\wedge$ \& V keys until the number in the display matches the motor rated current. <br> Then press |  |
| Set the V/f pattern. <br> Parameters n09 through n15 set the V/f pattern. Table 5-4 in section 5.26 lists recommended V/f patterns. The numbers in parentheses shown in the example below are for a $460 \mathrm{~V} / 60 \mathrm{~Hz}$ variable torque application (fan or pump). |  |  |
| Set Parameter n09Maximum output frequency. $(60.0 \mathrm{~Hz})$ | Press and hold V until n09 is displayed on the digital operator. <br> Use the $\square$ $\wedge$ \& $\square$ V keys until the desired number is in the display. <br> Then press | (1) <br> (1) |

Table 2-1. Startup Procedure - Continued

| DESCRIPTION | KEY SEQUENCE | DIGITAL OPERATOR DISPLAY |
| :---: | :---: | :---: |
| Set Parameter n10Voltage Max. $(460 \mathrm{~V})$ | $\square$ DATA ENTER <br> Use the $\square$ $\wedge$ \& V keys until the desired number is in the display. |  |
| Set Parameter n11- <br> Frequency at max. voltage point (motor rated frequency) $(60.0 \mathrm{~Hz})$ | Use the $\square$ $\wedge$ \& $\square$ V keys until the desired number is in the display. |  |
| Set Parameter n12Frequency - Midpoint $(30.0 \mathrm{~Hz})$ | Use the $\square$ $\wedge$ \& V keys until the desired number is in the display. |  |


| Table 2-1. Startup Procedure - Continued |  |  |
| :---: | :---: | :---: |
| DESCRIPTION | KEY SEQUENCE | DIGITAL OPERATOR DISPLAY |
| Set Parameter n13- <br> Voltage - Midpoint $(80 \mathrm{~V})$ | Use the $\square$ $\Lambda$ \& V keys until the desired number is in the display. |  |
| Set Parameter n14Frequency - Minimum $(1.5 \mathrm{~Hz})$ | Use the $\square$ $\wedge$ \& V keys until the desired number is in the display. |  |
| Set Parameter n15- <br> Voltage - Minimum (18 V) | Press $\wedge$ $\square$ DATA then ENTER <br> Use the $\square$ $\wedge$ \& V keys until the desired number is in the display. |  |

Table 2-1. Startup Procedure - Continued

| DESCRIPTION | KEY SEQUENCE | DIGITAL OPERATOR DISPLAY |
| :---: | :---: | :---: |
| Prepare to test run the drive from the Digital Operator. Motor should be disconnected from the load. <br> This will set the drive into the "Local" mode, and bring up the motor current display. | Press DSPL LED is lit. <br> Press the $\square$ $\wedge$ key once. <br> Display the drive's output current by pressing DSPL four times. Turn the Digital Operator Pot all the way to the left (counter-clockwise). |  |
| Test run the drive from the Digital Operator | WARNING: The next key press will cause the motor to turn! Take appropriate safety precautions! <br> RUN <br> Press the <br> key then slowly turn the Digital Operator Pot to the right about $1 / 4$ of a turn. The display on the drive will show the actual motor amps. <br> Operation checkpoints: <br> - Motor rotates smoothly <br> - Motor rotates in correct direction. (If motor does not rotate in the proper direction, stop the motor and remove power from the Drive. Switch motor connections T1 (U) and T2 (V) at the Drive to change direction). <br> - Motor has no abnormal vibration or noise. <br> - Acceleration and deceleration are smooth. <br> - Unit is not overloaded. (Displayed current does not exceed drive rated current). <br> key. |  |
| This completes the startup. Make further programming changes as required. |  |  |

${ }^{(1)}$ The number in the display may be different than shown.

## Section 3. OPERATION AT LOAD

After completing the start-up, and programming of constants, turn off the AC main circuit power. Make additional wiring connections required for the external control functions selected by the constant programming. Connect the driven machine to the motor. Verify that the driven machine is in running condition, and that no dangerous conditions exist around the Drive system.

## OPERATING PRECAUTIONS

- Before applying a RUN command, verify that the motor is stopped.
- NEVER use a motor whose full-load amps exceeds the Drive rating.
- When starting and stopping the motor, use the operation signals (RUN/STOP, FWD/REV), NOT a magnetic contactor on the power supply side.

Run the motor under load with control by the Digital Operator using the same procedure as for the Initial Start-up. If the Digital Operator is used in combination with external commands or external commands only are used, the procedure must be altered accordingly.

## Section 4. DIGITAL OPERATOR

### 4.1 GENERAL

All functions of the Drive are accessed using the Digital Operator. In addition to controlling motor operation, the operator can enter information into the Drive memory to configure the Drive to the application, by using the Function LEDs.
4.2 DIGITAL OPERATOR

## A. Digital Operator Description

The Digital Operator has a 3-digit LED display. Both numeric and alpha-numeric data can appear on the display.

Indicators and keys on the Digital Operator are described in Figure 4-1.


## B. Description of Function LEDs

By pressing the DSPL key on the Digital Operator, the operator can step to each of the seven Function LEDs and its associated display/setting function:



## IOUT - Output Current Monitor

Displays the level of output current (Amps) that the drive is currently producing. This is a monitor only function; the operator cannot change the displayed value by use of the keypad.

## MNTR - Monitor Selection

Pressing ENTER allows access to the various Monitor parameters, $\boldsymbol{U}$-01 through $\boldsymbol{U}-10$ and $\boldsymbol{U}-15$. These are monitor only functions; the operator cannot change the displayed value. Accessible during run command. See section 4.4. for complete listing of all monitor parameters.

F/R - FWD/REV Run Selection
Sets the rotation direction of the motor when a Run command is given by the Digital Operator keypad. Display of For = forward run, $r E u=$ reverse run.

LO/RE - Local / Remote Selection
This toggles between the Local (Digital Operator) and Remote (set by parameters n02 \& n03) modes of operation. This affects both the start/stop functions, as well as the frequency reference. Local / Remote status cannot be changed using this LED when a multi-function input terminal is set for Local/Remote (n36 through n39 set for "17").

PRGM - Parameter Programming
Selects or reads data using parameter number ( $n \boldsymbol{X X}$ ). Data is displayed by pressing the ENTER key, and can be changed by pressing the "up arrow" or "down arrow" keys. Any changes can be saved by again pressing the ENTER key. Pressing the DSPL key exits the Programming mode.

### 4.3 STATUS INDICATOR LEDs

There are two indicator LEDs on the front of the Drive. The Drive status is indicated by various combinations of ON, Blinking, and OFF conditions of these two LEDs:

| cONDITION | (Green) <br> O <br> RUN | (Red) <br> O <br> ALARM |
| :--- | :---: | :---: |
| Operation Ready (during stop) <br> Ramp to Stop (during decel) | Blinking <br> Long Blinking | Off <br> Off |
| Normal Operation (running) <br> Alarm | On <br> Blinking or ON | Off <br> Blinking |
| Fault | Off | On |

For details of how the status indicator LEDs function during a drive fault, refer to the "TROUBLESHOOTING" section.

### 4.4 MONITOR DISPLAYS

When using the Monitor Function, a variety of information will appear on the Digital Operator display when each of the U-XX (display only) parameters is selected.

| PARAMETER | MONITORED ITEM | DISPLAY EXAMPLE |
| :---: | :---: | :---: |
| 01 | Frequency reference (Hz) | 60.0 |
| 02 | Output frequency (Hz) | 60.0 |
| 03 | Output current (A) | 12.5 |
| 04 | AC output voltage (V) | 230 |
| 05 | DC Bus voltage (VPN) | 325 |
| 06 | Input terminal status | IIllil ${ }^{(1)}$ |
| 07 | Output terminal status | IIIIII (2) |
| 09 | Fault record (last record faults) ${ }^{(3)}$ | oC |
| 10 | Software number XXX | 013 |
| 15 | Data reception error | 0 |

(1) Actual display appearance:

${ }^{(2)}$ Actual display appearance:

(3) See section 6 for viewing of fault log contents.

## Fault record display

When U-09 is selected, a three-digit box is displayed.

- Example $\square \square \square$. 3-digit numbersFault description
"---" is displayed if there is no fault.
(Refer to section 6 for details of fault.)
- Viewing fault record Press the $\triangle$ or $\nabla$ key to examine the complete fault record.
- Clearing fault record

Set parameter n01 to " 6 " to clear the fault record. Display returns to "n01" after completion of 6 setting.

NOTE: Parameter initializing ( $\mathrm{n} 01=10$ or 11 ) also clears the fault record.

## Section 5. PROGRAMMABLE FEATURES

### 5.1 GENERAL

This section describes features of the Drive which are defined by programmed settings in the various parameters in memory. Since most features use more than one parameter, the descriptions appear in alphabetical order by the function name. In Table 5-1, the functions are grouped into operational categories. To cross reference a particular parameter to the features to which it applies, see the listings in Appendix 1.

Table 5-1. List of Features Defined By Parameters

| FUNCTION | PARAGRAPH REFERENCE | PARAMETER(S) |
| :---: | :---: | :---: |
| SET-UP <br> Initialization (Reset), 2-Wire or 3-Wire | 5.20 | n01 |
| Volts/Hertz Patterns | 5.26 | n09-n15 |
| Thermal Motor Overload Protection | 5.24 | n32, n33 |
| Copy Function | 5.27 | n76, n77 |
| STARTING <br> Accel Time | 5.2 | n16, n18 |
| S-Curve Characteristics | 5.3 | n20 |
| DC Injection Braking at Start | 5.7 | n52, n54 |
| STOPPING <br> Stopping Method | 5.23 | n04 |
| Decel Time | 5.2 | n17, n19 |
| DC Injection Braking at Stop | 5.7 | n52, n53 |
| SPEED CONTROL <br> Frequency Reference, Upper \& Lower Limits | 5.9 | n30, n31 |
| Jog Reference | 5.12 | n29, n36-n39 |
| Frequency Reference Selection | 5.11 | n03, n07, n08 |
| Multi-step Speed Setting | 5.11 | n03, n21-n28, n36-n39 |
| Up/Down Frequency Setting | 5.17E | n39 |
| Modbus Control | 5.14 | n02, n03, n68-n74 |
| REVERSE <br> Reverse Run Disabled | Table A1-1 | n05 |
| Critical Frequency Rejection | 5.6 | n49-n51 |
| Carrier Frequency | 5.5 | n46 |
| Speed Search | 5.17D | n36-n39 |
| Speed Coincidence | 5.18 | n40, n58 |
| Slip Compensation | 5.21 | n32, n64- n67 |
| RUNNING IMPROVEMENTS <br> Torque Compensation | 5.25 | n63 |
| Stall Prevention | 5.22 | n55-n57 |
| PROTECTIVE FEATURES <br> Momentary Power Loss Ride-thru | 5.15 | $n 47$ |
| Auto Restart | 5.4 | n48 |
| Overtorque/Undertorque Detection | 5.19 | n40, n59-n61 |
| DRIVE CONTROLS, INPUT <br> Analog Frequency Reference Bias and Gain | 5.8 | n41, n42 |
| Multi-function Input Terminals | 5.17 | n36-n39 |
| External Fault Terminals | 5.17 | n36-n39 |
| DRIVE OUTPUT <br> Multi-function Output Terminals | 5.18 | $n 40$ |
| Analog Monitor Output (Multi-function) | 5.16 | n44, n45 |

A. n16: Accel Time 1
n17: Decel Time 1
Factory setting (each): $\mathbf{1 0 . 0}$ seconds
Range (each): 0.0 to 999 seconds
n18: Accel Time 2
n19: Decel Time 2
Factory setting (each): 10.0 seconds
Range (each): 0.0 to 999 seconds
The Drive incorporates two sets of individually programmable acceleration and deceleration times. Setting resolution is 0.1 seconds when set to less than 100 seconds; resolution is 1 second when set to 100 seconds or more.
B. n36 thru n39: Multi-
function Inputs (Term. S1 thru S7)
By programming data " 11 " into one of the multifunction parameters ( $n 36$ thru $n 39$ ), one of the multifunction input terminals (S2 thru S5) becomes a time selection input. When the input terminal (i.e. external contact) is open, Time $1(n 16 / n 17)$ is selected. When the input terminal is closed, Time $2(n 18 / n 19)$ is selected.

Data 11 : Accel/Decel Time Selection

n020 : S-Curve Selection

| Factory setting: 0 |
| :--- |
| Range: 0 to 3 |

Setting of this parameter determines the S-curve (starting) characteristics of the acceleration ramp.

0 = S-curve disabled
1 = S-curve of 0.2 seconds
2 = S-curve time of 0.5 seconds
3 = S-curve time of 1.0 seconds


The following figure shows FWD/REV switching and acceleration \& deceleration to a stop with S-curve active.


### 5.4 AUTO-RESTART

A. n48: Number of Auto-Restart Attempts

Factory setting: 0
Range: 0 to 10

When a fault occurs during operation, the Drive can be programmed for an auto-restart operation to automatically reset the fault. Auto-restart operation will use the number of reset attempts set in this parameter, up to the maximum of 10 . When set to " 0 ", no auto-restarts will be attempted.

- The following faults can be automatically reset:
oC: Overcurrent
ou: Overvoltage (OV)
GF: Ground Fault
- The number of restart attempts available will be reset to the $n 48$ setting when:

1. 10 minutes has elapsed without a fault occurring.
2. The RESET key, or external Fault Reset push button, is pressed.
3. Power is removed from the Drive.
n46: Carrier Frequency Upper Limit

Factory Setting: 3 or 4 (see table below)
Range: 1 to $4 ; 7$ to 9

The relationship between output frequency and carrier frequency is determined from the set value of $\boldsymbol{n} 46$.
(a) For constant carrier frequency, set to " 1 ", " 2 ", " 3 ", " 4 ".
(b) For synchronous mode, set $n 46$ to " 7 ", " 8 ", or " 9 ". These setting values establish carrier frequencies of 12f, 24f, or 36f, respectively.

| $\begin{gathered} n 46 \\ \text { SETTING } \end{gathered}$ | CARRIER FREQUENCY(kHz) |  | $\begin{aligned} & \text { SLOPE } \\ & \underset{\left(=\frac{\mathrm{Fc})}{\mathrm{Fo}}\right.}{ } \end{aligned}$ | OUTPUT FREQUENCY(Hz) |  | MODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Maximum(Fcmax) | Minimum(Fcmin) |  | F1 | F2 |  |
| 1 | 2.5 | 2.5 | 0 | NA | NA | CONSTANT |
| 2 | 5.0 | 5.0 | 0 | NA | NA |  |
| 3 | 7.5 | 7.5 | 0 | NA | NA |  |
| 4 | 10.0 | 10.0 | 0 | NA | NA |  |
| 7 | 2.5 | 1.0 | 12 | 83.3 | 208.3 | SYNCHRONOUS |
| 8 | 2.5 | 1.0 | 24 | 41.6 | 104.1 |  |
| 9 | 2.5 | 1.0 | 36 | 27.7 | 69.4 |  |



Carrier frequency should be decreased as the distance between the Drive and the motor increases, to reduce capacitive coupling in the motor leads.

- For wiring distances greater than 100 m ( 328 ft .), $n 46$ should be set to 2.5 kHz (data " 1 " ) or less.

Setting carrier frequency to a value higher than its factory setting requires derating of the drive's output current - refer to the following table:

| Rated Input | Old Drive Model No. | New Drive Model No. CIMR-J7AM | $\begin{gathered} \text { Rated } \\ \text { Output } \\ \text { Current (A) } \\ \hline \end{gathered}$ | n46 |  | $\begin{array}{\|c\|} \hline \text { Derated } \\ \text { Output } \\ \text { Current (A) }{ }^{(1)} \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Factory Setting | $\begin{gathered} \text { Frequency } \\ (\mathrm{kHz}) \end{gathered}$ |  |
| 230V | JDA001 | 20P10 | 0.8 | 4 | 10 | No <br> Derate Required |
|  | JDA002 | 20P20 | 1.6 | 4 | 10 |  |
|  | JDA003 | 20P40 | 3.0 | 4 | 10 |  |
|  | JDA005 | 20P70 | 5.0 | 4 | 10 |  |
|  | JDA008 | 21P50 | 8.0 | 3 | 7.5 | 7.0 |
|  | JDA011 | 22P20 | 11.0 | 3 | 7.5 | 10.0 |
|  | JDA017 | 23P70 | 17.5 | 3 | 7.5 | 16.5 |
| 460V | JDB001 | 40P20 | 1.2 | 3 | 7.5 | 1.0 |
|  | JDB002 | 40P40 | 1.8 | 3 | 7.5 | 1.6 |
|  | JDB003 | 40P70 | 3.4 | 3 | 7.5 | 3.0 |
|  | JDB005 | 41P50 | 4.8 | 3 | 7.5 | 4.0 |
|  | JDB009 | 43P70 | 8.6 | 3 | 7.5 | 7.6 |

(1) Derated Output Current values are the maximum currents available with a carrier frequency n 46 setting of "4" ( 10 kHz ).
A. n49: Prohibited Frequency 1
n50: Prohibited Frequency 2

Factory setting (each): 0.0
Range (each): 0.0 to 400 Hz

These parameters allow programming of up to three prohibited frequency points for eliminating problems with resonant vibration of the motor/machine. This feature does not actually eliminate the selected frequency values, but will accelerate and decelerate the motor through the prohibited bandwidth.
B. n51: Prohibited Frequency Deadband

| Factory setting: 0.0 |
| :--- |
| Range: 0.0 to 25.5 Hz |

This parameter determines the width of the deadband around each selected prohibited frequency point. The factory setting is " 1.0 ", which establishes a deadband of $\pm 1.0 \mathrm{~Hz}$.

## EXAMPLE:

Vibration encountered between 30.0 and 36.0 Hz .
SOLUTION: Set n49 to " 33.0 l . This is the center of the problem frequency band.
Set $n 51$ to " 3.0 ". This will cause the Drive to reject all frequency command values between 30.0 and 36.0 Hz .
A frequency command in the deadband will be converted to the bottom value of the deadband, e.g. a command of 33 Hz would result in a run frequency of 30 Hz .


NOTE: $\mathbf{n 4 9}$ > n50 - The highest prohibit frequency required needs to be in n49 and the lowest prohibit frequency needs to be in n50.

### 5.7 DC INJECTION BRAKING

| $n 14$ : Minimum Frequency | Range: 0.1 to 10.0 Hz |
| :---: | :---: |
| n52: DC Injection Braking Current (\% of Drive Rated Current) | Factory setting: 50 \% |
|  | Range: 0 to $100 \%$ |
| n53: DC Injection Time at Stop | Factory setting: 0.5 sec |
|  | Range: 0.0 to 25.5 sec |
| n54: DC Injection Time at Start | Factory setting: 0.0 sec |
|  | Range: 0.0 to 25.5 sec |

DC injection can be used to stop a motor whose rotational direction is uncertain at start-up, or to help stop a coasting motor.

With ramp to stop enabled ( $\mathbf{n 0 4}=\mathbf{~ " ~} 0$ " ) , after a STOP command is received the Drive controls motor deceleration according to the Decel Time setting, until output frequency reaches the DC injection braking start frequency (or Minimum Frequency, n14). Then the Drive output is turned off and DC injection current is applied to the motor. The effective DC injection time and current should be set to provide adequate stopping without excessive motor heating. The DC injection voltage is determined by the DC injection braking current and motor impedance.

$n 41$ : Analog Frequency Reference Gain
Factory setting: 100 \%
Range: 0 to 255 \%
Sets the auto-speed frequency command gain, in increments of $1 \%$.
n42: Analog Frequency Reference Bias

| Factory setting: 0 \% |
| :--- |
| Range: -99 to 99 \% |

## ADJUSTMENT PROCEDURE:

1. With no input, adjust Bias (n42 setting) until an output of 0.0 Hz is obtained.
2. With full scale input, adjust Gain (n41 setting) until an output of 60.0 Hz (or other desired max. output frequency) is obtained.

NOTE: Follow the same adjustment procedure for other desired frequency setpoints.

## For inverse-acting frequency reference

1. Begin with $\boldsymbol{n} 41$ \& $\boldsymbol{n} 42$ settings as shown below.
2. Fine tune as indicated above.


### 5.9 FREQUENCY REFERENCE UPPER AND LOWER LIMITS

n30 : Frequency Reference Upper Limit
n31: Frequency Reference Lower Limit

Factory setting: 100 \%
Range: 0 to 110 \%
Factory setting: 0 \% Range: 0 to 110 \%

These two parameters set the range for the frequency command signal. Each is set, in increments of $1 \%$, as a percentage of maximum frequency (Fmax; n09) as established by either the selected standard V/f pattern or custom V/f pattern.

NOTE: All references are affected by the upper and lower limit points.

## EXAMPLE:

```
n09 = " 60" Hz (100%)
n30 = " 80" % = 48Hz - Max. speed
n31 = " 10" % = 6Hz - Min. speed
```



NOTE: n30 must be set to a higher value than n31.

### 5.10 FREQUENCY REFERENCE RETENTION

n62 : Up/Down Hold Memory

Factory setting: 0
Range: 0 or 1

Used with the Up/Down command. To retain the held frequency reference when a stop command is issued or when power is removed, set $\boldsymbol{n} 62$ to " 1 ".

| SETTING | DESCRIPTION |
| :---: | :--- |
| 0 | Not retained |
| 1 | Held reference retained |
| Note: Frequency reference value must <br> remain unchanged for a minimum of 5 <br> seconds to be retained. |  |

### 5.11 FREQUENCY REFERENCE SELECTION

The Drive allows selection of up to eleven frequency references. One is an analog input (terminal FR), eight are digital presets (selected with multi-function inputs), one is a jog input, and one is via serial communications (MODBUS).

## A. Frequency Reference via Analog Input

In order to set the Drive so the frequency reference comes from the analog input, set parameter n03 as shown in the table below:

| PARAMETER | SETTING | DESCRIPTION |
| :---: | :---: | :--- |
| n03 | $\mathbf{2}$ | Sets terminal FR for a voltage input (0 to 10V) Set SW8 to "V" (Off) ${ }^{(1)}$ |
|  | $\mathbf{3}$ | Sets terminal FR for a current input (4 to 20mA) Set SW8 to "I" (1) |
|  | $\mathbf{4}$ | Sets terminal FR for a current input (0 to 20mA) Set SW8 to "I" (1) |

${ }^{(1)}$ SW8 can be found just above the control circuit terminals. The switch connects a $250 \Omega$ resistor from terminal FR to FC when set to the "l" position (to the right). NOTE: All power must be removed from the Drive before SW8 can be set.

## B. Frequency Reference via Digital Presets

In order to set the Drive so the frequency reference comes from the digital presets, the following parameters need to be set:

| PARAMETER | SETTING | DESCRIPTION |
| :---: | :---: | :--- |
| n21 <br> thru <br> n29 | User <br> Set | Eight Frequency References, plus jog Frequency |
| n36 <br> thru <br> n39 | 6,7, <br> and/or 8 8 | Sets the multi-function inputs so selection of the various references is <br> possible with contact closures. |

Depending upon how many preset references are required determines the actual settings of n36 thru n39. Several examples are listed below.

Example 1 - Four preset references
Programming: n38 = 6 and n39 = 7

| DIGITAL PRESET | S5 | S4 |
| :---: | :---: | :---: |
| Selectable Reference $^{(2)}$ | Open | Open |
| n22 | Open | Closed |
| n23 | Closed | Open |
| $\mathbf{n 2 4}$ | Closed | Closed |

Example 2 - Eight preset references
Programming: n37 = 6, n38 = 7 and n39 = 8

| DIGITAL PRESET | S5 | S4 | S3 |
| :---: | :---: | :---: | :---: |
| Selectable Reference ${ }^{(2)}$ | Open | Open | Open |
| $\mathbf{n 2 2}$ | Open | Open | Closed |
| $\mathbf{n 2 3}$ | Open | Closed | Open |
| $\mathbf{n 2 4}$ | Open | Closed | Closed |
| $\mathbf{n 2 5}$ | Closed | Open | Open |
| $\mathbf{n 2 6}$ | Closed | Open | Closed |
| $\mathbf{n 2 7}$ | Closed | Closed | Open |
| $\mathbf{n 2 8}$ | Closed | Closed | Closed |

${ }^{(2)}$ The Selectable Reference is chosen from the following list:

| REFERENCE SOURCE | PROGRAMMING |
| :--- | :--- |
| Digital Operator Speed Pot | $\mathrm{n} 03=0$ |
| Digital Preset Reference parameter n21 | $\mathrm{n} 03=1$ |
| Analog Input Terminal FR | $\mathrm{n} 03=2,3$, or 4 |
| Serial Communications | $\mathrm{n} 03=6$ |

C. Jog Reference - See paragraph 5.12
D. Frequency Reference via Serial

Communications - See paragraph 5.14
n29: Jog Reference
n36 thru n39: Multi-function Inputs

| Factory setting: 6.0 Hz |
| :--- |
| Range: 0.0 to $400^{\cdots \cdots \cdots \cdots} \mathrm{Hz}$ |

(Term. S1 - S5)
Data 10 : Jog Selection

When jog operation is selected (by external Jog and Run signals), the Drive output will ramp to the output level set by this parameter.

When an external Jog signal is present, it will override the existing operation mode and the Drive will ramp to the level set by this parameter.

## EXAMPLE:

OPERATION BY REMOTE SIGNAL INPUT (RUN \& JOG)


Also see descriptions of MULTI-FUNCTION INPUT TERMINALS, paragraph 5.17.

### 5.13 LOCAL/REMOTE REFERENCE AND SEQUENCE SELECTION

The Drive has the ability to have either a local or a remote reference and sequence selection.
Local - Run and stop functions are controlled by the buttons on the digital operator (n06). The frequency reference can come from a digital preset reference (n21 \& n08) or the digital operator pot (n07).

Remote - Run and stop functions are determined by parameter n02. The frequency reference is determined by parameter n03.

Switching between local and remote is accomplished either by the LO/RE LED on the digital operator or by the use of a multi-function input terminal programmed to data "17" (see paragraph 5.17A).
n02 : Operation Method Selection
Factory setting: 1

| SETTING | DESCRIPTION |
| :---: | :---: |
| 0 | Run and stop is controlled by the $\quad$ RUN and $\begin{aligned} & \text { STOP } \\ & \text { RESET }\end{aligned}$ buttons on the digital operator. |
| 1 | Run and stop is controlled by the multi-function input terminals <br> 2-Wire control - Run Forward (n36 thru n39 is set to a data of "1") Run Reverse (n36 thru n39 is set to a data of "2") <br> 3-Wire control - Parameter n37 needs to be set to a data of " 0 " <br> Run is controlled by a momentary closure on terminal S1 Stop is controlled by a momentary open on terminal S2 Forward/Reverse is controlled by terminal S3 |
| 2 | Run and stop is controlled by serial communications |

n03: Reference Selection
Factory setting: 2

| SETTING | DESCRIPTION |
| :---: | :--- |
| $\mathbf{0}$ | Frequency reference is controlled by the digital operator potentiometer. |
| $\mathbf{1}$ | Frequency reference is controlled by a digital preset speed (n21) and is affected by n08. |
| $\mathbf{2}$ | Frequency reference is controlled by the analog input terminal FR and is 0-10V DC |
| $\mathbf{3}$ | Frequency reference is controlled by the analog input terminals FR and is $4-20 \mathrm{~mA}$ |
| $\mathbf{4}$ | Frequency reference is controlled by the analog input terminal FR and is 0-20mA |
| $\mathbf{6}$ | Frequency reference is controlled by serial communications. |

n06: Stop Key Function
Factory setting: 0
Range: 0 or 1

| SETTING | DESCRIPTION |  |
| :---: | :---: | :---: |
| 0 | $\frac{\text { STOP }}{\text { RESET }}$ | key is effective at all times, regardless of programming of n02 |
| 1 | $\begin{aligned} & \frac{\text { STOP }}{\text { RESET }} \\ & \hline \end{aligned}$ | key is effective only when the run/stop command is from the digital operator ( $\mathrm{n} 02=0$ ) |

n07: Reference Selection - Digital Operator

| Factory setting: 0 |
| :--- |
| Range: 0 or 1 |

This parameter is only effective when the Drive is in the local mode.

| SETTING | DESCRIPTION |
| :---: | :--- |
| $\mathbf{0}$ | Frequency reference is controlled by the digital operator potentiometer |
| $\mathbf{1}$ | Frequency reference is controlled by a digital preset speed (n21) and is affected by n08. |


| $n 08:$ | Frequency Reference Setting | Factory setting: 0 |
| :---: | :--- | :--- |
|  | Method From Digital Operator | Range: 0 or 1 |

This parameter is only effective when the frequency reference is controlled by a digital preset (n21).

| SETTING | DESCRIPTION |
| :---: | :---: |
| 0 | DATA ${ }^{\text {DNTER }}$ key must be pressed in order for the Drive to accept the frequency reference. |
| 1 | key does not have to be pressed. <br> The Drive responds immediately to the and keys. |

### 5.14 MODBUS CONTROL (OPTIONAL)

The Drive can perform serial communication by using a programmable controller (PLC), MODBUS ${ }^{\text {TM }}$ protocol, and by installing an optional RS-232 or RS-485/422 interface card. MODBUS is composed of one master PLC and 1 to 31 (maximum) slave units (Drives). In serial communication between the master and slaves, the master always starts transmission and the slaves respond to it.
The master communicates with one slave at a time. Address numbers are assigned to each slave in advance, and the master specifies an address to communicate with. The slave which receives the command from the master executes the function, and then responds to the master.
A. Communication Specifications

- Interface : RS-485 \& RS-422, or RS-232
- Synchronization
- Transmission parameters
- Protocol
- Maximum number to units to be connected
: Asynchronous
: Baud rate - Selectable from 2400, 4800, 9600, 19,200 BPS (n71)
Data length — Fixed to 8 bits
Parity - Parity / no parity, even / odd selectable (n72)
Stop bit - Fixed to 1 bit
: MODBUS RTU
: 31 units
B.1. Connecting MODBUS - RS-485/422 Interface Option (Model No. RS-485/J7)

Terminals S+, S-, R+, and R- are used for Modbus communications. A terminating resistor can be enabled between R+ and R-by setting SW1 to "ON." SW1 is found on the optional interface, SI485/J7, and turns the terminating resistor on and off.

The terminating resistor should only be enabled on the drive farthest away from the master.
B.2. Connecting MODBUS - RS-232 Interface Option (Model No. RS-232/J7)


Cable must be assembled per pin-out diagram shown below.


## C. Sending/Receiving Data

Data that can be sent and received are run/stop commands, frequency reference, fault reset, Drive status, and setting and reading of parameters.
n02 : Operation Method Selection

| Factory setting: $\mathbf{0}$ |
| :--- |
| Range: 0 to 2 |

Parameter n02 selects where the run/stop commands (sequence) will come from. To be able to provide a run command over the Modbus serial communications link, set this to a data of "2."
n03 : Reference Selection

| Factory setting: $\mathbf{0}$ |
| :--- |
| Range: 0 to 6 |

Parameter n03 selects where the frequency reference will come from. To be able to provide a frequency reference over the Modbus serial communications link, set this to a data of " 6 ."
n36 thru n39: Multi-function Inputs
(Term. S2-S5)

| Data 18: Serial communication/ |
| :---: |
| Digital Operator |

Selects operation by serial communication or by external terminal. If the status of this command input is changed while the Drive is running, the selection is ignored until the next time the Drive is stopped.

Open : Run according to the setting of Operation Method Selection (n02) and Reference Selection (n03).
Closed : Run by frequency reference and run command from serial communication.

EXAMPLE: $\quad n 02$ setting is " 1 ", and $n 03$ setting is " 2 ". $n 39=18$.

TERMINAL S5 Open: Frequency reference from control circuit terminal FR and run command from control circuit terminals S1, S2.
TERMINAL S5 Closed: Frequency reference and run command from serial communication.

Factory setting: 0
Range: 0 to 3

The frequency resolution from the PLC and in the frequency reference and output frequency monitor (by communication) are selected with this parameter. The output frequency resolution of the Drive is 0.1 Hz . Even if the Modbus resolution is changed to 0.01 Hz in $n 69$, the value in the hundredths digit of 0.01 Hz of the received frequency reference is rounded off internally. When $30,000 / 100 \%$ in units of $0.1 \%$ is selected, the value is also rounded off.
n70 : Modbus Slave Address

| Factory setting: $\mathbf{0}$ |
| :--- |
| Range: 0 to 31 |

Each slave Drive on the same transmission line must be given a unique address.

## n71 : Modbus Baud Rate

| Factory setting: 2 |
| :--- |
| Range: 0 to 3 |

Selects the baud rate, as indicated by the following table:

| Setting | Baud Rate (BPS) |
| :---: | :---: |
| 0 | 2400 |
| 1 | 4800 |
| 2 | 9600 |
| 3 | 19,200 |

n72: Modbus Parity Selection

Factory setting: 1
Range: 0 to 2

Selects the parity, as indicated by the following table:

| Setting | Parity |
| :---: | :---: |
| 0 | None |
| 1 | Even |
| 2 | Odd |

NOTE: To change the values set in $\boldsymbol{n 7 0}$ thru $\boldsymbol{n 7 2}$ and enable the new settings, it is necessary to turn OFF power to the Drive, then turn it ON again.
$n 68$ : Modbus Time Out Detection

| Factory setting: 1 |
| :--- |
| Range: 0 to 4 |

If time between Modbus messages exceeds 2.0 seconds, the Drive will respond according to the table below. A setting of " 4 " disables this fault condition.

If communications error exists, Drive will respond according to the following table:

| Setting | Description |
| :---: | :--- |
| 0 | Coast to Stop (fault) |
| 1 | Ramp to Stop using $\boldsymbol{n 1 7}$ (fault) |
| 2 | Ramp to Stop using $\boldsymbol{n 1 9}$ (fault) |
| 3 | Continue Operation (Alarm) |
| 4 | Disabled |

## D. Loop Test

The Drive has the ability to perform a serial communications self-check, in the form of a loop test. Use the following steps to perform a loop test.

1. With power applied to the Drive set parameter n39 $\mathbf{= 3 5}$.
2. Remove power from the Drive and wait for the charge light to go off.
3. Disconnect all wiring terminals $\mathrm{R}_{+}, \mathrm{R}-, \mathrm{S}+, \mathrm{S}-\& \mathrm{~S} 7$.
4. Install the following wires:
connect $\mathrm{S}_{+}$to $\mathrm{R}_{+}$
connect $S$ - to R-
connect S7 to SC
5. Apply power to the Drive.

If the Drive displays a normal frequency reference, the loop test was successful.
If the Drive displays "CE" on the digital operator, the loop test failed and the serial communications hardware is not functioning correctly. Remove power and recheck all of the above connections. Re-apply power. If the Drive still displays "CE", the unit will need to be replaced.
6. Remove power from the Drive.
7. Disconnect the wires installed in step 4.
8. Re-apply power and program n39 to its previous setting. NOTE: the factory setting of n39 $=6$.
n47: Momentary Power Loss Ride-thru Protection

```
0 = Disabled (Factory setting)
1 = Enabled - 2 sec. power loss
    ride-thru
2 = Enabled - indefinite power loss
    ride-thru, provided control
    power is maintained
```

The setting of this parameter either enables or disables the ride-thru feature of the Drive. If disabled, the unit will stop immediately whenever a power loss occurs. If enabled, the Drive will continue to operate during a momentary power loss of up to $80 \%$, but if the loss exceeds the identified time period, the Drive will stop.

### 5.16 MULTI-FUNCTION ANALOG MONITOR OUTPUT (Term. AM and AC)

 n44: Multi-function Analog OutputFactory setting: 0
The monitor output provides a $0-10 \mathrm{Vdc}$ signal proportional to either output frequency or output current between terminals $A M \& A C$ :
$0=0-10 \mathrm{Vdc}$ proportional
to output frequency
$1=0-10$ Vdc proportional to output current

$n 45$ : Analog Monitor Gain

Factory Setting: 1.00
Range: 0.01 to 2.00

This constant is used to calibrate the meter connected to terminals AM \& AC.


The multi-function input terminals can be activated in one of two ways:

| Type of input | Description |
| :---: | :--- |
| NPN | A contact closure must be made between a multi-function terminal (S1 to S5) and SC in order <br> to activate that input. |
| Pactory Setting) | A DC voltage (+24) must be present on a multi-function input terminal (S1 to S5) in order <br> to activate that input. NOTE: The minus (-) side of the 24 VDC supply must be connected to SC. |

The multi-function inputs are configured using rotary switch SW7, which is located above the upper row of control circuit terminals and can be set with a small screwdriver. NOTE: All power must be removed from the Drive before SW7 can be set.


External wiring for NPN inputs
${ }^{(1)}$ Customer supplied component
n36: Terminal S2 Function
n37: Terminal S3 Function
n38: Terminal S4 Function
n39: Terminal S5 Function

External wiring for PNP inputs


| Factory settings: | $\frac{2}{2}$-Wire control |  |
| :---: | :---: | :---: |
| 3-Wire control |  |  |
| $n 36$ | $\mathbf{2}$ | $\mathbf{2}$ |
| $n 37$ | 5 | 0 |
| $n 38$ | 3 | 3 |
| $n 39$ | 6 | 6 |

These seven parameters select the input signal function for terminals S 1 thru S 5 , and can be independently set.

Parameter settings are checked whenever the enter key is pressed. A parameter set failure (Err) will occur if any of the following conditions are detected:

- Two parameters contain the same value (n36 thru n39).
- Both the Accel/Decel Hold (data 16) and the Up/Down (data 34) functions have been selected.

Table 5-2 lists the possible data setting values and their descriptions for these parameters.


* All contact closures must be maintained, except for speed search, which may be momentary (see paragraph 5.17D).


## A. Data 17: Remote/Local

The use of a Remote/Local command input allows switching between the Digital Operator control and the external terminal input signals or serial communications, without the need to re-program n02 or n03. If the status of the Remote/Local command input is changed while the Drive is running, the Remote/Local operation selection is not completed until the next time the Drive is stopped.

> Closed = Controlled locally (Digital Operator)
> NOTE: Parameter n07 determines if the frequency reference will come from the digital operator potentiometer or parameter n21.

Open $=$ Controlled remotely (external terminal inputs, for Start/Stop and frequency reference, or serial communications).

NOTE: When a multi-function input terminal is programmed for Local/Remote, the LO/RE LED will only display local or remote status. Local/Remote cannot be adjusted from the digital operator.
B. Data 12 : External Base Block by N.O. Contact

- When either the Forward Run command or Reverse Run command is present, and the external Base Block command is applied (i.e. contact closed), coast stop is accomplished (after a 20 msec delay), while the frequency command is maintained. When the Base Block command is removed, the Drive will recover in a manner similar to that of Speed Search operation.
- When both the Forward Run command and
 Reverse Run command are open, and the external Base Block command is applied (i.e. contact closed), coast stop is accomplished and after a 20 msec delay the frequency command is changed to 0 Hz . When the Base Block command is removed, the Drive will remain in stopped condition until Forward Run command or Reverse Run command is again applied.
- When external Base Block command is active, a blinking " $\boldsymbol{b}$ b " will be displayed on the Digital Operator.



## C. Data 13 : External Base Block by N.C. Contact

Base block operation is the same as described above, except that the Base Block contact must be open to be recognized.
D. Data 14 : Speed Search From Max Frequency

Data 15 : Speed Search From Set Frequency
A multi-function input terminal is utilized to activate speed search. When the external speed search command is closed, the base is blocked for the min. base block time, then the speed search is made. The operation depends on the set value.


Set values 14 and 15 CANNOT be selected in combination.

- When 14 is set, the speed search begins with the maximum frequency.
- When 15 is set, the speed search begins with the frequency command command that has been set after the search command was received.


Speed Search Operation Timing
E. Data 34 : Up/Down Function

Programming data " 34 " for n39 (multi-function input terminal) allows the S4 / S5 inputs to be used for Up/Down frequency setting.

## NOTES:

1. Parameter $n 38$ will not be valid when $n 39$ is set to " 34 ".
2. Jog has priority over Up/Down.
3. Up/Down has priority over Multi-step Frequency inputs.
4. Upper limit speed is set by the formula:
$n 09$ (Fmax) $\times \frac{n 30 \text { (Freq. Ref. Upper Limit) }}{100}$
5. Lower limit speed is from n31, Frequency Reference Lower Limit.
6. See section 5.10 for information on the Up/Down hold memory.

EXAMPLE:
n39 Data 34: Up/Down function


| INPUT SIGNAL |  |
| :---: | :---: | :--- |
| Term. S4 | Term. S5 |$\quad$ FUNCTION



Up/Down Frequency Setting Timing

## F. Data 16 : Accel/Decel Hold

By programming data " 16 " into one of the multifunction input parameters ( n36 thru n39) , one of the multi-function input terminals (S1 thru S5) becomes a HOLD command input. As long as the HOLD command is present, accel and decel are in a prohibit state, and the output speed is held at the level it was at the time the HOLD command was input. When the HOLD command is removed while the system is still in Run condition, accel or decel will again become active to allow output to reach set speed. If Stop is initiated while the HOLD command is present, the prohibit state is cancelled and the system enters stop operation.


HOLD Function Timing
n40: Contact Output (external terminals MA, MB, \& MC)

A contact can be programmed to change states during any of the conditions indicated in Table 5-3.


Table 5-3. Multi-function Output Terminals

| Set Value | Description |  |
| :---: | :---: | :---: |
|  | Condition | Signal Level |
| 0 | Fault | Closed = Drive fault has occurred (except CPF0, CPF1) |
| 1 | During operation | Closed = Drive is operating |
| 2 | Speed at set frequency | Closed = Frequency Reference = output frequency See paragraph 5.18A |
| 3 | Zero Speed | Closed = Drive is at zero Hz. |
| 4 | Frequency detection - low | Closed = Output frequency $\leq \boldsymbol{n 5 8}$. See paragraph 5.18B |
| 5 | Frequency detection - high | Closed = Output frequency $\geq \boldsymbol{n 5 8}$. See paragraph 5.18C |
| 6 | Overtorque detection (N.O. contact) | Closed = Overtorque detected See paragraph 5.19 |
| 7 | Overtorque detection (N.C. contact) | Open = Overtorque detected <br> See paragraph 5.19 |
| 10 | Alarm (minor fault) | Closed = Alarm condition is present |
| 11 | During coast to stop | Closed = Drive output base block is active; motor is coasting |
| 12 | Local/Remote | Open = Frequency and Run Command by ext. input; <br> Closed = Frequency and Run Command by Digital Operator |
| 13 | Operation ready | Closed = Drive is ready for operation (not faulted) |
| 14 | Auto-restart | Closed = During auto-restart operation |
| 15 | During Undervoltage | Closed = Drive has an undervoltage fault or warning |
| 16 | During Reverse run | Closed = Drive operation in reverse |
| 17 | During Speed Search | Closed = Drive performing a speed search |
| 18 | Serial communication | Closed = Command from serial communication |

n58: Speed Coincidence Frequency / Frequency Detection Level

| Factory setting: 0.0 Hz |
| :--- |
| Range: 0.0 to 400 Hz |

Speed coincidence is used to control an output contact at terminals MA or MB (with respect to terminal MC), or terminals P1, P2 \& PC, when selected by $n 40$.
n40: Multi-function Output Selection
Data 2, 4 or 5
The output contact will close, dependent upon the data programmed into $n 40$. See the appropriate figure below for operation.

## A. Speed at Set Frequency (setting: n40 = " 2 ")


B. Frequency Detection - Low
(setting: n40 = " 4 ")

C. Frequency Detection - High (setting: n40 = " 5 ")


Overtorque detection is used to compare Drive rated output current/torque with the overtorque detection level. When the output current is equal to or greater than the defined level, an overtorque condition exists. This will be indicated as an oL3 fault on the Digital Operator. This feature can be selected to operate over a wide range of conditions.
A. n59: Overtorque Detection

| Factory setting: $\mathbf{0}$ |
| :--- |
| Range: 0 to 4 |

This constant determines whether the overtorque detection function of the Drive is enabled, under what conditions it will detect for overtorque, and what operation it will perform after detecting an overtorque.

| Setting | Overtorque / <br> Undertorque <br> Disabled | Operation <br> After <br> Detection | Detection <br> Condition |
| :---: | :---: | :---: | :--- |
| 0 | Disabled | - | - |
| 1 | Overtorque | Continues | Only at set frequency |
| 2 | Overtorque | Coast to stop | Only at set frequency |
| 3 | Overtorque | Continues | At all times except during <br> stopping or DC injection braking |
| 4 | Overtorque | Coast to stop | At all times except during <br> stopping or DC injection braking |

- For overtorque detection during accel or decel, set to " " " or " 4".
- For continuous operation after overtorque detection, set to " 1 " or " 3 ". During detection, the Digital Operator displays and " oL3 " alarm (blinking).
- To stop the Drive at an overtorque detection fault, set to " 2 " or " 4 ". At detection, the Digital Operator displays an " oL3 " fault.
- To output an overtorque detection signal, set output terminal function selection (n40) to " 6 " or " 7 ".
B. n60: Overtorque Detection Level

| Factory setting: 160 \% |
| :--- |
| Range: 30 to 200 \% |

This is the reference point for determining that an overtorque condition exists. Set as a percent of Drive rated current or as a percent of motor rated torque.
C. n61: Overtorque / Undertorque Detection Time

| Factory setting: $\mathbf{0 . 1}$ sec. |
| :--- |
| Range: 0.1 to 10.0 seconds |

Determines how long an overtorque condition must exist before another event will occur, e.g. coast to stop, multi-function output change of state, or oL3 warning or fault display.
E. n40: Multi-function Output 1
(terminals MA, MB \& MC)

## Data 6 or 7: Overtorque Detection

The Form-C contact, or an open collector output, can be programmed to change states during an overtorque detection condition.

## EXAMPLE OF OVERTORQUE DETECTION

```
n59 setting: 2 - Overtorque enabled, only at set frequency, coast to stop
n40 setting: 6 - Output contact programmed for overtorque detection
n60 setting: 110% - Level at which overtorque is sensed
n61 setting: 1.0 s - Time delay before overtorque event occurs
```



Overtorque Detection Timing Diagram
n01 : Parameter Selection / Initialization

| Factory setting: 1 |
| :--- |
| Range: 0 to 9 |

The following table shows which parameters can be programmed (displayed \& changed) or only displayed when n001 is selected.

| Setting | Function |
| :---: | :--- |
| $\mathbf{0}$ | $n 01$ can be read and set; <br> $n 02-n 79$ read only |
| $\mathbf{1}$ | $n 01$ - $n 79$ can be read and set |
| $2-5$ | Not Used |
| 6 | Clear Fault Record Only |
| $7-9$ | Not Used |
| $\mathbf{1 0}$ | Initialization: 2 -Wire control |
| 11 | Initialization: 3 Wire control |

## WARNING

By entering an " 10 " or a " 11 " into n01, all parameters in the Drive will return to their factory settings.

Factory Configuration for

| Parameter | Terminal | 2-Wire Control | 3-Wire Control |
| :---: | :---: | :---: | :---: |
|  | S1 | Forward Run | Start |
| n36 | S2 | $2=$ Reverse Run | 2 = Stop |
| n37 | S3 | 5 = Fault Reset | $0=$ Fwd/Rev Command |
| n38 | S4 | 3 = External Fault (N.O.) | 3 = External Fault (N.O.) |
| n39 | S5 | 6 = Multi Step Ref. Cmd. A | 6 = Multi Step Ref. Cmd. A |



Know your application before using either Initialization function of n01.
This parameter must be set to " 0 " or " 1 " for operation.
" 10 " = Factory 2-Wire Control Initialization (Maintained RUN Contact)
" 11 " = Factory 3-Wire Control Initialization (Momentary START/STOP Contact)
Entering either Initialization code resets all parameters to factory settings, and automatically returns n01 setting to " 1 ". If the Drive is connected for 3-Wire control and this parameter is set to " 10 " (2-Wire Control Initialization), the motor may run in reverse direction WITHOUT A RUN COMMAND APPLIED. Equipment damage or personal injury may result.


After " 10 " or " 11 " has been entered in n01, the Motor Rated Current (n32)
MUST BE REPROGRAMMED to the correct setting for the application.
n66 : Slip Compensation Gain

| Factory setting: $\mathbf{0 . 0}$ |
| :--- |
| Range: 0.0 to 2.5 |

Slip compensation is used to increase motor speed to account for slip; the Drive accomplishes this by automatically boosting output frequency, with a corresponding boost in output voltage.

The slip compensation gain ( $\boldsymbol{n} 66$ ) determines how much compensation frequency is added. If using the Drive in Open Loop Vector, typically no adjustment is necessary. The equation below illustrates how the compensation frequency is generated.

NOTE: A slip compensation gain setting of 0.0 disables slip compensation.

$$
\text { Compensation Frequency }=\frac{\text { Output Current }-\frac{(\mathrm{n} 65 \text { * } \mathrm{n} 32)}{100}}{\mathrm{n} 32-\frac{(\mathrm{n} 65 * \mathrm{n} 32)}{100}} \text { * n64 * n66 }
$$

Slip Compensation Equation

n65: Motor No-Load Current
Factory setting: See Table A3-1
Range: 0 to 99\%
Motor no-load current (n65) is set as a percentage of motor full-load current (n32). It is used as shown in the slip compensation equation.
$n 67$ : Slip Compensation Primary Delay
Time Constant

| Factory setting: 2.0 sec. |
| :--- |
| Range: 0.0 to 25.5 sec. |

Parameter $\boldsymbol{n} 67$ can be increased to improve stability or decreased to improve response to load changes.
A. n55: Stall Prevention During Deceleration

Factory setting: 0
Range: 0 to 1

| Setting | Function |
| :---: | :---: |
| 0 | Stall prevention during deceleration enabled |
| 1 | Stall prevention during deceleration disabled |

Stall prevention during deceleration automatically adjusts the deceleration rate while monitoring the DC bus voltage to prevent overvoltage during deceleration.

When the motor load is large or decel time is short, actual decel time may be longer than the set value because of stall prevention.

B. $\quad$ n56 : Stall Prevention Level During Acceleration

Factory setting: 170\%
Range: 30-200 \%

This parameter determines the actual Drive output current level during an acceleration condition. Set in percent of Drive rated output current.

A setting of " 200 " disables stall prevention during acceleration. During acceleration, if the output current exceeds the value in $n 56$, acceleration stops and frequency is maintained. When the output current goes below the value set in $\boldsymbol{n} 56$, acceleration resumes.

In the constant horsepower region [actual output frequency $\geq$ max. voltage frequency (n11)], the stall prevention level during acceleration is changed by the following formula:

$\begin{aligned} & \text { Stall prevention level during } \\ & \text { accel (constant horsepower) }\end{aligned}=$ Stall prevention level during accel $\times \frac{\text { Max. voltage frequency }}{\text { Actual output frequency }}$
C. n57: Stall Prevention Level At Set Speed

| Factory setting: $160 \%$ |
| :--- |
| Range: $30-200 \%$ |

This parameter determines the actual Drive output current level while operating at set speed (frequency). Set in percent of Drive rated output current (see Appendix 2).

A setting of " 200 " disables stall prevention at set speed. During running at set speed, if the output current exceeds the value set in $n 57$, the Drive will begin to decelerate. When the output current goes below the value set in $n 57$, acceleration begins, up to the set frequency.


Factory setting: 0
Range: 0 to 1

Selects the stopping method suitable for the application.

| Setting | Description |
| :---: | :--- |
| 0 | Deceleration (ramp) to stop |
| 1 | Coast to stop |

## A. Data 0 : Deceleration to Stop

Upon removal of the FWD (REV) Run command, the motor decelerates at the deceleration rate determined by the time set in Decel Time 1 (n17), and DC injection braking is applied immediately before stop. If the decel time is too short or the load inertia is too large, an overvoltage (OV) fault may occur on a stop command - the decel time must be increased.

B. Data 1 : Coast to Stop

Upon removal of the FWD (REV) Run command, the motor coasts to rest.


### 5.24 THERMAL OVERLOAD PROTECTION

n32 : Motor Rated Current

Factory setting: See Table A3-1
Range: see description

This parameter should be set, in increments of 0.1 A , to the rated current (FLA) value shown on the motor nameplate; this value MUST BE between $0 \%$ and $120 \%$ of the drive rated current. If the motor FLA does not fall within this range, a different Model No. drive must be used.

NOTE: Setting n32 to " 0.0 " disables the motor overload protection function, regardless of the setting of n33 or n34.
n33 : Electronic Thermal Motor Protection

Factory setting: 1
Range: 0 to 2

| Setting | Electronic Thermal Characteristics |
| :---: | :--- |
| 0 | Inverter Duty Motor, standard rating |
| 1 | General Purpose Motor, short-term rating |
| 2 | Electronic thermal overload protection disabled |

n34 : Electronic Thermal Overload Protection Time Constant

| Factory setting: $\mathbf{8}$ |
| :--- |
| Range: 1 to 60 min. |

This parameter sets the electronic thermal overload relay protection time when when $150 \%$ of overload is applied after the motor is operated continuously at rated current.

The Drive protects against motor overload with a UL-recognized, built-in electronic thermal overload relay.

The electronic thermal overload function monitors motor temperature, based on Drive output current and time, to protect the motor from overheating. When the electronic thermal overload trips, an " oL1 "error occurs, shutting OFF the Drive output and preventing excessive overheating of the motor.

When operating with one Drive connected to only one motor, an external thermal relay is not needed. When operating several motors with one Drive, install a thermal overload relay on each motor.

|  | Cooling Effect | Current Characteristics | Electronic Thermal Overload |
| :---: | :---: | :---: | :---: |
|  | Effective when operated at 60 Hz from a commercial power supply |  | " oL 7 " error (motor overload protection) occurs when continuously operated at less than 60 Hz at 100\% load. |
|  | Effective when operated at low speed (approx. 6Hz) | ORQUE <br> (\%) <br> Base Frequency 60 Hz <br> (V/f for 60Hz, 230V Input Voltage) | Electronic thermal overload protection not activated even when continuously operated at less than 60 Hz at $100 \%$ load. |

### 5.25 TORQUE COMPENSATION

n63: Torque Compensation Gain ( K T)

| Factory setting: 1.0 |
| :--- |
| Range: 0.0 to 2.5 |

Torque Compensation Gain (n63) adjusts how much the output voltage is boosted when motor load increases. It is used to compensate for resistive losses in the motor and the wiring between the drive and the motor. Torque compensation is only active when the Drive is in the V/f control mode.


Example of Torque Compensation
Operation

The V/f pattern can be tailored to suit your specific application and load characteristics by adjusting parameters n09 to $\mathbf{n 1 5}$ (see the V/f characteristics figure on the following page).

## Table 5-4. Recommended V/f Patterns

| Max. <br> Freq. | Starting Torque | Load Type $^{1}$ | $\begin{aligned} & \text { n09 } \\ & (\mathrm{Hz}) \end{aligned}$ | $\begin{aligned} & \mathrm{n} 10 \\ & (\mathrm{~V})^{3} \end{aligned}$ | $\begin{aligned} & \mathrm{n} 11 \\ & (\mathrm{~Hz}) \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{n} 12 \\ & (\mathrm{~Hz}) \\ & \hline \end{aligned}$ | $\begin{aligned} & n 13 \\ & (\mathrm{~V})^{3} \\ & \hline \end{aligned}$ | $\begin{array}{r} \mathrm{n} 14 \\ (\mathrm{~Hz}) \\ \hline \end{array}$ | $\begin{aligned} & \mathrm{n} 15 \\ & (\mathrm{~V})^{3} \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | Normal | VT | 50.0 | 230 | 50.0 | 25.0 | 40 | 1.3 | 9 |
| 50 | High ${ }^{2}$ | VT | 50.0 | 230 | 50.0 | 25.0 | 57 | 1.3 | 12 |
| 60 | Normal | VT | 60.0 | 230 | 60.0 | 30.0 | 40 | 1.5 | 9 |
| 60 | High ${ }^{2}$ | VT | 60.0 | 230 | 60.0 | 30.0 | 57 | 1.5 | 12 |
| 50 | Normal | CT | 50.0 | 230 | 50.0 | 3.0 | 17 | 1.5 | 12 |
| 50 | Medium | CT | 50.0 | 230 | 50.0 | 2.5 | 23 | 1.3 | 13 |
| 50 | High ${ }^{2}$ | CT | 50.0 | 230 | 50.0 | 2.5 | 28 | 1.3 | 16 |
| 60 | Normal | CT | 60.0 | 230 | 60.0 | 1.5 | 12 | 1.5 | 12 |
| 60 | Medium | CT | 60.0 | 230 | 60.0 | 3.0 | 20 | 1.5 | 13 |
| 60 | High ${ }^{2}$ | CT | 60.0 | 230 | 60.0 | 3.0 | 28 | 1.5 | 23 |
| 72 | Normal | CT | 72.0 | 230 | 60.0 | 3.0 | 17 | 1.5 | 12 |
| 90 | Normal | CT | 90.0 | 230 | 60.0 | 3.0 | 17 | 1.5 | 12 |
| 120 | Normal | CT | 120 | 230 | 60.0 | 3.0 | 17 | 1.5 | 12 |
| 180 | Normal | CT | 180 | 230 | 60.0 | 3.0 | 17 | 1.5 | 12 |

## NOTES:

${ }^{1} \mathrm{VT}=$ Variable Torque, typically used for blowers, centrifugal pumps, and fans. CT = Constant Torque, most other applications. Consult Yaskawa for further assistance.

The following conditions must be considered when selecting a V/f pattern:

- Pattern matches the voltage-frequency characteristics of the motor.
- Maximum motor speed.
$2 \mathrm{~V} / \mathrm{f}$ pattern for high starting torque should be selected for:
- Long wiring distance.
- Large voltage drop at start
- AC reactor connected to Drive input or output.
- Use of motor rated below Drive max. output.
${ }^{3}$ Voltages shown are for 230 V motors; for other motor voltages, multiply all voltage (V) values by (Vmtr/230). i.e., for a 460 V motor, multiply by $460 / 230=2$.
n09: Frequency - Max. (Fmax)
n10: Voltage - Max. (Vmax)
n11: Frequency - Max. Voltage point (FA)
n12: Frequency - Midpoint (FB)
n13: Voltage - Midpoint (Vc)
n14: Frequency - Min. (Fmin)
$n 15$ : Voltage - Min. (Vmin)

These seven parameters define the V/f pattern. The illustration below shows how these constants relate to each other in establishing the custom V/f pattern.


V/f Characteristics Set by n09 thru n15

NOTE: To establish a V/f pattern with a straight line from Fmin to FA, set $\mathrm{F}_{\mathrm{B}}=$ Fmin. The setting of Vc is then disregarded and does not affect the V/f pattern.


The V/f parameter settings are checked each time the ENTER key is pressed while programming the V/f parameters. A parameter set value failure (Err ) will occur if any part of the following relationships among n09 thru n15 is not TRUE:
(a) $F \max \geq F_{A} \geq F_{B} \geq F \min$
(b) $V \max \geq V_{c} \geq V_{m i n}$

### 5.27 COPY FUNCTION

The optional Remote Digital Operator can be used to store (upload) parameters from a drive, which can then be copied (downloaded) to another drive. These parameters are stored in EEPROM in the Digital Operator. The Copy Function is possible only for drives of the same type (i.e. from one J7 to another, but not from a J 7 to a V7 or vice versa), and voltage rating ( 230 V drive or 460 V drive). In addition, the following parameters cannot be copied:

| Parameter No. | Parameter Name |
| :---: | :--- |
| n09 to n15 | V/f Settings |
| n32 | Motor Rated Current |
| n46 | Carrier Frequency |
| n64 | Motor Rated Slip |
| n65 | Motor No-load Current |

n76 : Parameter Copy Function Selection
Ex: Factory Setting: rdy

| Setting | Description |
| :---: | :--- |
| rdy | Drive is ready to use Copy Function |
| rEd | Read (or upload) all parameters from the drive and store them in the Digital Operator |
| Cpy | Copy (or download) all parameters stored in the Digital Operator to the drive |
| vFy | Verify that parameters stored in the Digital Operator and the drive are the same |
| vA | Displays the voltage and kW rating of the drive whose parameters are stored in the <br> Digital Operator |
| Sno | Displays the software number of the drive whose parameters are stored in the <br> Digital Operator |

n77: Parameter Copy Access Selection

| Factory Setting: $\mathbf{0}$ |
| :--- |
| Range: 0 or 1 |


| Setting | Description |
| :---: | :--- |
| $\mathbf{0}$ | Copying Disabled |
| $\mathbf{1}$ | Copying Allowed |

The Copy Function can be enabled or disabled using parameter $\boldsymbol{n 7 7}$ - parameters cannot be uploaded or downloaded when this parameter is disabled ( $\boldsymbol{n 7 7}=0$ ), preventing the accidental overwriting of parameters stored in either the Digital Operator or the Drive.

If $\boldsymbol{n 7 7}=0$ and an upload or download is attempted ( $\boldsymbol{n 7 6}=$ rEd or Cpy), a "PrE" error message will blink on the Digital Operator display - press DSPL or DATA/ENTER to clear the message.

For more detailed information on the use of the Copy Function, please visit our website at www.drives.com.

## Section 6. FAULT DIAGNOSIS AND CORRECTIVE ACTIONS

### 6.1 GENERAL

This section describes the alarm and fault displays, explanations for fault conditions and corrective actions to be taken if the Drive malfunctions.

A failure in the Drive can fall into one of two categories, Alarm or Fault.
A blinking "Alarm" indication is a warning that a trouble condition will soon occur, or that a programming error has been made. The Drive will continue to operate during an "Alarm" indication.

A blinking "Minor Fault" indication is displayed during less serious faults, or when a problem exists in the external circuitry. The Drive will continue to operate, and a "Minor Fault" contact will be closed if a multi-function output is programmed for the condition.

A steady "Major Fault" indication is displayed when the Fault relay has tripped. The motor coasts to a stop, and a fault signal output is present at control circuit terminals MA, MB and MC.


Table 6-1. Alarm Displays and Corrective Actions

| Alarm Display |  | Drive Status | Explanation | Causes and Corrective Actions |
| :---: | :---: | :---: | :---: | :---: |
| Digital Operator | RUN (Green) ALARM (Red) |  |  |  |
| $\underset{\text { Blinking }}{\text { LILI }}$ | "ֵon <br> "̈ | Warning only. <br> Fault contacts do not change state. | UV (Main circuit low voltage) Main circuit DC voltage drops below the low-voltage detection level while the drive output is OFF. 230 V : Stops at main circuit DC voltage below approx. 200 V ( 160 V for singlephase) <br> 460V: Stops at main circuit DC voltage below approx. 400 V | Check the following: <br> - Power supply voltage <br> - Main circuit power supply wiring is connected. <br> - Terminal screws are securely tightened. |
| Blinking |  |  | OV (Main circuit overvoltage) Main circuit DC voltage exceeds the over voltage detection level while the drive output is OFF. Detection level: approx. 410 V or more (approx. 820 V for 460 V class). | Check the power supply voltage. |
| $\underset{\text { Blinking }}{\text { BII }}$ |  |  | OH (Cooling fin overheat) Intake air temperature rises while the drive output is OFF. | Check the intake air temperature. |
| $\stackrel{\text { CRÍ }}{\text { EFlinking }}$ |  |  | CAL (MODBUS communications waiting) Correct data has not been received from the PLC when the parameter n02 (operation command selection) is 2 or n03 (frequency reference selection) is 6 , and power is turned ON . | Check communication devices, and transmission signals. |

Table 6-1. Alarm Displays and Corrective Actions - Continued

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Alarm Display} \& \multirow[b]{2}{*}{Drive Status} \& \multirow[b]{2}{*}{Explanation} \& \multirow[b]{2}{*}{Causes and Corrective Actions} <br>
\hline Digital Operator \& RUN (Green) ALARM (Red) \& \& \& <br>

\hline  \& \begin{tabular}{l}
11 (1) <br>
$\stackrel{\text { " }}{\prime \prime}$

 \& 

Warning only. <br>
Fault contacts do not change state.

 \& 

OP $\square$ (Parameter setting error when the parameter setting is performed through the MODBUS communications) <br>
OP1: Two or more values are set for multifunction input selection. (parameters n36 to n39) <br>
OP2: Relationship among $\mathrm{V} / \mathrm{f}$ parameters is not correct. (parameters n09, n11, n12, n14) <br>
OP3: Setting value of electronic thermal standard current exceeds $150 \%$ of drive rated current. (parameter n32) <br>
OP4: Upper / lower limit of frequency reference is reversed. (parameters n32, n33) <br>
OP5: (parameters n49 and n50) <br>
OP9: Carrier frequency setting is incorrect. (parameter n46)
\end{tabular} \& Check the setting values. <br>

\hline | $\square 1$ |
| :--- |
| Blinking | \& \& \& OL 3 (Overtorque detection) Motor current exceeded the preset value in parameter n60. \& Reduce the load, and increase the accel / decel time. <br>

\hline $$
\underset{\text { Blinking }}{\text { EI }}
$$ \& $\stackrel{\circ}{\prime \prime}$ \& \& SEr (Sequence error) Drive receives LOCAL / REMOTE select command or communication / control circuit terminal changing signals from the multifunction terminal while the drive output is ON . \& Check the external circuit (sequence). <br>

\hline
\end{tabular}

Table 6-1. Alarm Displays and Corrective Actions - Continued

| Alarm Display |  | Drive Status | Explanation | Causes and Corrective Actions |
| :---: | :---: | :---: | :---: | :---: |
| Digital Operator | RUN (Green) ALARM (Red) |  |  |  |
| $\underset{\text { Blinking }}{\text { K }}$ | $\stackrel{\text { " }}{7}$ | Warning only. Fault contacts do not change state. | BB (External baseblock) Baseblock command at multi-function terminal is active, the drive output is shut OFF (motor coasting). Temporary condition is cleared when input command is removed. | Check the external circuit (sequence). |
| $E F$ |  |  | EF (Simultaneous FWD/ REV run commands) When FWD and REV run commands are simultaneously input for over 500 ms , the drive stops according to parameter n04. | Check the external circuit (sequence). |
| $\begin{aligned} & \text { EII } \\ & \text { Blinking } \end{aligned}$ | "ֵ |  | STP (Operator function stop) is pressed during running by the control circuit terminals FWD / REV command. The drive stops according to parameter n04. <br> STP (Emergency stop) Drive receives emergency stop alarm signal. Drive stops according to parameter n04. | Open FWD/REV command of control circuit terminals. <br> Check the external circuit (sequence). |
| FFIn <br> Blinking |  |  | FAN (Cooling fan fault) Cooling fan is locked. | Check the following: <br> - Cooling fan <br> - Cooling fan wiring is not connected. |

Table 6-2. Fault Displays and Corrective Actions

| Fault Display |  | Drive Status | Explanation | Causes and Corrective Actions |
| :---: | :---: | :---: | :---: | :---: |
| Digital Operator | RUN (Green) ALARM (Red) |  |  |  |
| E |  |  | OC (Overcurrent) Drive output current momentarily exceeds approx. 200\% of rated current. | - Short circuit or grounding at drive output side <br> - Excessive load inertia <br> - Extremely rapid accel/ decel time (parameters n16 to n19) <br> - Special motor used <br> - Starting motor during coasting <br> - Motor of a capacity greater than the drive rating has been started. <br> - Magnetic contactor open/closed at the drive output side |
| III |  | Protective Operation. Output is shut OFF and motor coasts to a stop. | OV (Main circuit overvoltage) <br> Main circuit DC voltage exceeds the overvoltage detection level because of excessive regenerative energy from the motor. Detection level: <br> 230V: Stops at main circuit DC voltage below approx. 410 V <br> 460V: Stops at main circuit DC voltage approx. 820 V or more | - Insufficient decel time parameters n17 and n19) <br> - Lowering of minus load (elevator, etc.) <br> - Increase decel time. <br> - Connect optional dynamic braking resistor. |
| 1181 |  |  | UV1 (Main circuit low voltage) <br> Main circuit DC voltage drops below the lowvoltage detection level while the drive output is ON . <br> 230V: Stops at main circuit DC voltage below approx. 200 V <br> 460V: Stops at main circuit DC voltage approx. 400 V or more | - Reduction of input power supply voltage <br> - Open phase of input supply <br> - Occurrence of momentary power loss <br> Check the following: <br> - Power supply voltage <br> - Main circuit power supply wiring is connected. <br> - Terminal screws are securely tightened. |
| FE |  |  | GF (Ground Fault) Ground current exceeded drive rated current. | Check motor insulation and wiring between drive and motor for damage. |

Table 6－2．Fault Displays and Corrective Actions－Continued

| Fault Display |  | Drive Status | Explanation | Causes and Corrective Actions |
| :---: | :---: | :---: | :---: | :---: |
| Digital Operator | RUN（Green） ALARM（Red） |  |  |  |
| ドロゴ | $\bullet$ | Protective Operation． Output is shut OFF and motor coasts to a stop． | UV2（Control power supply fault） Voltage fault of control power supply is detected． | Cycle power． If the fault remains． replace the drive． |
| ロ年 |  |  | OH （Cooling fin overheat） Temperature rise because of drive overload operation or intake air temperature rise． | －Excessive load <br> －Improper V／f pattern setting <br> －Insufficient accel time if the fault occurs during acceleration <br> －Intake air temperature exceeding $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ <br> Check the following： <br> －Load size <br> －V／f pattern setting （parameters n09 to n15） <br> －Intake air temperature． |
| 口1） 1 |  |  | OL1（Motor overload） Motor overload protection operates by built－in electronic thermal overload relay． | －Check the load size or V／f pattern setting （parameters n09 to n15） <br> －Set the motor rated current shown on the nameplate in parameter n32． |
| ロا̇ |  |  | OL2（Drive overload） Drive overload protection operates by built－in electronic thermal overload relay． | －Check the load size or V／f pattern setting （parameters n09 to n15） <br> －Check the drive capacity． |
| ロ1） |  |  | OL3（Overtorque detection） Drive output current exceeded the preset value in parameter n60． <br> When overtorque is detected，drive performs operation according to the preset setting of parameter n59． | Check the driven machine and correct the cause of the fault，or increase the value of parameter n60 up to the highest value allowed for the machine． |

Table 6-2. Fault Displays and Corrective Actions - Continued

| Fault Display |  | Drive Status | Explanation | Causes and Corrective Actions |
| :---: | :---: | :---: | :---: | :---: |
| Digital Operator | RUN (Green) ALARM (Red) |  |  |  |
| $E F$ | $\bullet$ | Protective Operation Output is shut OFF | EFD <br> (External fault) <br> Drive receives an external fault input from control circuit terminal. <br> EFO: External fault reference through MODBUS communications <br> EF2: External fault input command from control circuit terminal S2 <br> EF3: External fault input command from control circuit terminal S3 <br> EF4: External fault input command from control circuit terminal S4 <br> EF5: External fault input command from control circuit terminal S5 | Check the external circuit (sequence). |
| Friol | - | and motor coasts to a stop. | CPF-00 <br> Drive cannot communicate with the digital operator for 5 sec . or more when power is turned ON. | Cycle power after checking the digital operator is securely mounted. If the fault remains, replace the digital operator or drive. |
| FFi |  |  | CPF-01 <br> Transmission fault occurred for 5 sec or more when transmission starts with the digital operator. | Cycle power after checking the digital operator is securely mounted. If the fault remains, replace the digital operator or drive. |
| F「4 |  |  | CPF-04 <br> EEPROM fault of drive control circuit is detected. | - Record all parameter data and initialize the constants. (Refer to paragraph 5.20 for parameter initialization.) <br> - Cycle power. If the fault remains, replace the drive. |

Table 6-2. Fault Displays and Corrective Actions - Continued

| Fault Display |  | Drive Status | Explanation | Causes and Corrective Actions |
| :---: | :---: | :---: | :---: | :---: |
| Digital Operator | RUN (Green) ALARM (Red) |  |  |  |
| FFE | $\bullet$ | Protective Operation. Output is shut OFF and motor coasts to a stop. | CPF-05 <br> A/D converter fault is detected. | Cycle power. If the fault remains, replace the drive. |
| FriE |  |  | CPF-06 <br> Option card connecting fault | Remove power to the drive. <br> Check the connection of the digital operator. |
| Fri |  |  | CPF-07 <br> Operator control circuit (EEPROM or A/D converter) fault | Cycle power after checking the digital operator is securely mounted. If the fault remains, replace the digital operator or drive. |
| 口居 |  |  | OPR (Operator connecting fault) | Cycle power. If the fault remains, replace the drive. |
| LE |  |  | CE (MODBUS communications fault) | Check the communication devices or communication signals. |
| E! | $\stackrel{\text { " }}{\text { " }}$ $-$ <br> or | Stops according to parameter | STP (Emergency stop) The drive stops according to parameter n04 after receiving the emergency stop fault signal. | Check the external circuit (sequence). |
| (OFF) |  |  | - Insufficient power supply voltage <br> - Control power supply fault <br> - Hardware fault | Check the following: <br> - Power supply voltage <br> - Main circuit power supply wiring is connected. <br> - Terminal screws are securely tightened. <br> - Control sequence. Replace the drive. |

For display/clear of fault history, refer to page 4-4.

- Monitoring

Following items can be monitored by U-constants

| Constant <br> No. | Name |  | Description |
| :--- | :--- | :--- | :--- |
| U-01 | Frequency reference | Hz | Frequency reference can be monitored. |
|  | (FREF) |  | (Same as FREF) |
| U-02 | Output frequency <br> (FOUT) | Hz | Output frequency can be monitored. <br> (Same as FOUT) |
| U-03 | Output current <br> (IOUT) | Hz | Output current can be monitored. <br> (Same as IOUT) |
| U-04 | Output voltage | V | Output voltage can be monitored. |
| U-05 | DC voltage | V | Main circuit DC voltage can be monitored. |
| U-06 | Input terminal status | - | Input terminal status can be monitored. <br> (see paragraph 4.4) |
| U-07 | Output terminal status | - | Output terminal status can be monitored. <br> (see paragraph 4.4) |
| U-09 | Fault history <br> (last 4 faults) | - | Last four fault history is displayed. <br> (see paragraph 4.4) |
| U-10 | Software No. | - | Software No. can be checked. |
| U-15 | Data reception error | - | See Table below |


| U-15 <br> Data | Description |
| :---: | :--- |
| 0 | CRC Error |
| 1 | Data Length Error |
| 2 | Not Used |
| 3 | Parity Error |
| 4 | Overrun Error |
| 5 | Framing Error |
| 6 | Time out Error |

## Appendix 1. LISTING OF PARAMETERS

The Drive control circuits use various parameters to select functions and characteristics of the Drive. Changing of parameter settings must be done in the Program mode, or by use of the Function LEDs, if available (see Section 4).

The following table lists all parameters in numerical order. For each parameter, reference paragraph(s) in Section 5 are listed (if applicable) where the features of the Drive affected by that parameter are described.

Table A1-1. J7 Parameters

| PARAMETER | NAME | SETTING RANGE <br> (AND UNITS) | SETTING INCREMENT | FACTORY SETTING | USER SETTING | PARA. REF. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n01 | Parameter Selection / Initialization | 0: n01 can be read and set; n02-n79 read only <br> 1: n01-n79 can be read and set <br> 2-5: Not Used <br> 6: Clear Fault History Only <br> 7: Not Used <br> 10: 2 wire initialization (USA Spec) <br> 11: 3 wire initialization (USA Spec.) | 1 | 1 |  | 5.20 |
| n02 | Operation Method Selection | 0: Digital Operator <br> 1: Terminal <br> 2: Serial Communication (Modbus) | 1 | 1 |  | 5.13 |
| n03 | Reference Selection | 0: Digital Operator Pot <br> 1: Digital Operator <br> 2: Voltage Reference ( 0 to 10 V ) <br> 3: Current Reference ( 4 to 20 mA ) <br> 4: Current Reference ( 0 to 20 mA ) <br> 5: Pulse Train Reference <br> 6: Serial Communications (Modbus) | 1 | 2 |  | 5.13 |
| n04 | Stop Method | 0: Ramp to stop <br> 1: Coast to stop | 1 | 0 |  | 5.23 |
| n05 | Reverse Prohibit | 0: Reverse Run enabled <br> 1: Reverse Run disabled | 1 | 0 |  |  |
| n06 | STOP Key Function | 0: STOP key is effective regardless of programming of n02 <br> 1: STOP key is effective only when sequence command (per n02) is from Digital Operator | 1 | 0 |  | 5.13 |
| n07 | Reference Selection Digital Operator | 0: Frequency Reference from digital operator pot <br> 1: Frequency Reference from $\mathbf{n} 21$ | 1 | 0 |  | 5.13 |
| n08 | Frequency Reference Setting Method From Digital Operator | 0: ENTER key must be pressed to write-in new value <br> 1: ENTER key does not have to be pressed to write-in new value | 1 | 0 |  | 5.13 |
| n09 | Frequency - Max. | 50.0 to 400.0 | 0.1 (Hz) | 60.0 |  |  |
| n10 | Voltage - Max. | 0.1 to 255.0 (230V drive) 0.2 to 510.0 ( 460 V drive) | 0.1 (V) | $\begin{aligned} & 230 \\ & 460 \end{aligned}$ |  |  |
| n11 | Frequency - Max. Voltage Point | 0.2 to 400.0 | 0.1 (Hz) | 60.0 |  |  |
| n12 | Frequency - Midpoint | 0.1 to 399.9 | 0.1 (Hz) | 1.5 |  | 5.26 |
| n13 | Voltage - Midpoint | $\begin{array}{\|l\|} \hline 0.1 \text { to } 255.0 \text { (230V drive) } \\ 0.2 \text { to } 510.0 \text { (460V drive) } \end{array}$ | 0.1 (V) | 12 |  |  |
| n14 | Frequency - Min. | 0.1 to 10.0 | 0.1 (Hz) | 1.5 |  |  |
| n15 | Voltage - Min. | $\begin{aligned} & \hline 0.1 \text { to } 50.0 \text { (230V drive) } \\ & 0.2 \text { to } 100.0 \text { ( } 460 \mathrm{~V} \text { drive) } \end{aligned}$ | 0.1 (V) | 12 |  |  |
| n16 | Acceleration Time 1 | 0.0 to 999 | $\begin{array}{\|c} \hline 0.1(\mathrm{sec}) \\ (<100 \mathrm{sec} .) \\ 1(\mathrm{sec}) \\ (\geq 100 \mathrm{sec} .) \\ \hline \end{array}$ | 10.0 |  | 5.2 |
| n17 | Deceleration Time 1 |  |  |  |  |  |
| n18 | Acceleration Time 2 |  |  |  |  |  |
| n19 | Deceleration Time 2 |  |  |  |  |  |
| n20 | S-curve Selection | 0: No S-curve <br> 1: 0.2 second <br> 2: 0.5 second <br> 3: 1.0 second | 1 | 0 |  | 5.3 |

Table A1-1. J7 Parameters - Continued

| PARAMETER | NAME | SETTING RANGE (AND UNITS) | SETTING INCREMENT | FACTORY SETTING | USER SETTING | PARA. REF. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n21 | Frequency Reference 1 | 0.0 to 400 | $\begin{gathered} 0.1(\mathrm{~Hz}) \\ (<100 \mathrm{~Hz}) \\ \text { or } \\ 1(\mathrm{~Hz}) \\ (\geq 100 \mathrm{~Hz}) \end{gathered}$ | 6.0 |  | 5.11 |
| n22 | Frequency Reference 2 |  |  | 0.0 |  |  |
| n23 | Frequency Reference 3 |  |  | 0.0 |  |  |
| n24 | Frequency Reference 4 |  |  | 0.0 |  |  |
| n25 | Frequency Reference 5 |  |  | 0.0 |  |  |
| n26 | Frequency Reference 6 |  |  | 0.0 |  |  |
| n27 | Frequency Reference 7 |  |  | 0.0 |  |  |
| n28 | Frequency Reference 8 |  |  | 0.0 |  |  |
| n29 | Jog Frequency Reference |  |  | 6.0 |  | 5.12 |
| n30 | Frequency Reference Upper Limit | 0 to 110 | 1 (\%) | 100 |  | 5.9 |
| n31 | Frequency Reference Lower Limit | 0 to 110 | 1 (\%) | 0 |  |  |
| n32 | Motor Rated Current | 0.0 to 49.5 <br> (Up to $120 \%$ of inverter rated current) | 0.1 (A) | Note 1 |  | 5.24 |
| n33 | Electronic Thermal Overload Protection (for OL1 fault) | 0: Standard Motor <br> 1: Standard Motor - Short Term <br> 2: Disabled | 1 | 0 |  | 5.24 |
| n34 | Electronic Thermal Overload Protection Time Constant | 1 to 60 | 1 (min) | 8 |  |  |
| n35 | Cooling Fan Operation Selection | 0 : Operates only when drive is running (continues operation for 1 minute after drive is stopped) <br> 1: Operates with power applied to drive | 1 | 0 |  |  |
| n36 | Multi-function Input Selection 2 (Terminal S2) | 0: Fwd / Rev command (3 wire control) [can only be set in n37] <br> 2: Reverse run (2 wire control) <br> 3: External Fault (N.O.) <br> 4: External Fault (N.C.) <br> 5: Fault Reset <br> 6: Multi-step speed ref. cmd. A <br> 7: Multi-step speed ref. cmd. B <br> 8: Multi-step speed ref. cmd. C <br> 10: JOG Selection <br> 11: Accel/Decel time change cmd. <br> 12: External Base Block (N.O.) <br> 13: External Base Block (N.C.) <br> 14: Speed search from max. freq. <br> 15: Speed search from set freq. <br> 16: Accel/Decel hold command <br> 17: Remote/Local selection <br> 18: Serial Communication / control ckt. selection <br> 19: Fast Stop - Fault (N.O.) <br> 20: Fast Stop - Alarm (N.O.) <br> 21: Fast Stop - Fault (N.C.) <br> 22: Fast Stop - Alarm (N.C.) <br> 34: Up / Down command <br> 35: Loop Test [can only be set in n39] | 1 | $\begin{gathered} 2 \\ (2) \end{gathered}$ |  | 5.17 |
| n37 | Multi-function Input <br> Selection 3 (Terminal S3) |  | 1 | $\begin{gathered} 5 \\ (0) \end{gathered}$ |  |  |
| n38 | Multi-function Input Selection 4 (Terminal S4) |  | 1 | $\begin{gathered} 3 \\ (3) \end{gathered}$ |  |  |
| n39 | Multi-function Input <br> Selection 5 (Terminal S5) |  | 1 | $\begin{gathered} 6 \\ (6) \end{gathered}$ |  |  |
|  |  |  |  |  |  |  |
| n40 | Multi-Function Output Selection (Terminals MA, MB \& MC) | 0: Fault <br> 1: During running <br> 2: Speed Agree <br> 3: Zero Speed <br> 4: Frequency detection 1 <br> 5: Frequency detection 2 <br> 6: Overtorque detection (N.O.) <br> 7: Overtorque detection (N.C.) <br> 10: Minor Fault <br> 11: During Base Block <br> 12: Local / Remote <br> 13: Ready <br> 14: During auto restart <br> 15: During undervoltage <br> 16: During reverse run <br> 17: During speed search <br> 18: Serial Comm. Controlled | 1 | 1 |  | 5.18 |

Table A1-1. J7 Parameters - Continued

| PARAMETER | NAME | SETTING RANGE <br> (AND UNITS) | SETTING INCREMENT | FACTORY SETTING | USER SETTING | PARA. REF. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n41 | Analog Frequency Reference Gain | 0 to 255 | 1 (\%) | 100 |  | 5.8 |
| n42 | Analog Frequency Reference Bias | -100 to 100 | 1 (\%) | 0 |  |  |
| n43 | Analog frequency reference filter time constant | 0.00 to 2.00 | 0.01 (sec) | 0.10 |  |  |
| n44 | Multi-function Analog Output (Terminals AM \& AC) | 0: Output frequency <br> 1: Output Current <br> 2: DC Bus Voltage (10V / 400 VDC [ 800 VDC$]$ ) <br> 3: Motor Torque ( $10 \mathrm{~V} /$ Motor rated torque) <br> 4: Output Power (10V / Drive Capacity kW) | 1 | 0 |  | 5.16 |
| n45 | Analog Monitor Gain | 0.00 to 2.00 | 0.01 | 1.00 |  |  |
| n46 | Carrier Frequency | $\begin{array}{\|l\|} \hline 1 \text { to } 4 \text { (x } 2.5 \mathrm{kHz} \text { ) } \\ 7 \text { to } 9 \text { (synchronous) } \\ \hline \end{array}$ | 1 | 4 |  | 5.5 |
| n47 | Momentary Power Loss Ride-through Method | 0: Not Provided <br> 1: Continuous operation after power recovery within 2 sec . <br> 2: Continuous operation after power recovery within control logic time (no fault output) | 1 | 0 |  | 5.15 |
| n48 | Number of auto restarts attempts | 0 to 10 | 1 | 0 |  |  |
| n49 | Prohibit Frequency 1 | 0.00 to 400.0 | $\begin{gathered} \hline 0.01(\mathrm{~Hz}) \\ \text { or } 0.1(\mathrm{~Hz}) \\ \hline \end{gathered}$ | 0.00 |  | 5.6 |
| n50 | Prohibit Frequency 2 | 0.00 to 400.0 | $\begin{gathered} 0.01(\mathrm{~Hz}) \\ \text { or } 0.1(\mathrm{~Hz}) \end{gathered}$ | 0.00 |  |  |
| n51 | Prohibit Frequency Deadband | 0.0 to 25.5 | 0.01 (Hz) | 0.00 |  |  |
| n52 | DC Injection Current | 0 to 100 | 1 (\%) | 50 |  | 5.7 |
| n53 | DC Injection Time at stop | 0.0 to 25.5 | 0.1 (sec) | 0.0 |  |  |
| n54 | DC Injection Time at start | 0.0 to 25.5 | 0.1 (sec) | 0.0 |  |  |
| n55 | Stall Prevention During Deceleration | $\begin{array}{ll}\text { 0: } & \text { Enabled } \\ \text { 1: } & \text { Disabled }\end{array}$ | 1 | 0 |  | 5.22 |
| n56 | Stall Prevention During Acceleration | 30 to 200 | 1 (\%) | 170 |  |  |
| n57 | Stall Prevention Level During Running | 30 to 200 | 1 (\%) | 160 |  |  |
| n58 | Frequency Detection Level | 0.00 to 400.0 | $\begin{gathered} \hline 0.01(\mathrm{~Hz}) \\ \text { or } 0.1(\mathrm{~Hz}) \\ \hline \end{gathered}$ | 0.0 |  | 5.18 |
| n59 | Overtorque Detection (OL3) | 0: Detection Disabled <br> 1: Detect only at set frequency; operation continues <br> 2: Detect only at set frequency; coast to stop <br> 3: Detect during all frequency conditions; operation continues <br> 4: Detect during all frequency conditions; coast to stop | 1 | 0 |  | 5.19 |
| n60 | Overtorque Detection Level (OL3) | 30 to 200 | 1 (\%) | 160 |  |  |
| n61 | Overtorque Detection Delay Time (OL3) <br> Delay Time (OL3) | 0.1 to 10.0 | 0.1 (sec) | 0.1 |  |  |
| n62 | Up/Down Hold Memory | 0: Disabled <br> 1: Enabled | 1 | 0 |  | 5.10 |
| n63 | Torque Compensation Gain | 0.0 to 2.5 | 0.1 | 1.0 |  | 5.25 |
| n64 | Motor Rated Slip | 0.0 to 20.0 | 0.1 (Hz) | Note 1 |  | 5.21 |
| n65 | Motor No-load Current | 0 to 99 | 1 (\%) | Note 1 |  | 2.4A |
| n66 | Slip Compensation Gain | 0.0 to 2.5 | 0.1 | 0.0 |  |  |
| n67 | Slip Compensation Primary Delay Time | 0.0 to 25.5 | 0.1 (sec) | 2.0 |  | 5.21 |
| n68 | Modbus Time Out Detection | 0: Fault - Coast to stop <br> 1: Fault - Ramp to stop (n17) <br> 2: Fault - Ramp to stop (n19) <br> 3: Alarm - operation continues <br> 4: Disabled | 1 | 0 |  | 5.14 |
| n69 | Modbus Frequency Reference Unit | 0: 0.1 Hz <br> 1: 0.01 Hz <br> 2: $100 \% / 30000$ <br> 3: $0.1 \%$ | 1 | 0 |  |  |
| n70 | Modbus Slave Address | 0 to 32 | 1 | 0 |  |  |

Table A1-1. J7 Parameters - Continued

| PARAMETER | NAME | SETtiNG RANGE <br> (AND UNITS) | SETTING INCREMENT | FACTORY SETTING | USER SETTING | PARA. REF. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n71 | Modbus Baud Rate | 0: 2400 bps <br> 1: 4800 bps <br> 2. 9600 bps <br> 3: 19200 bps | 1 | 2 |  | 5.14 |
| n72 | Modbus Parity Selection | 0: even parity <br> 1: odd parity <br> 2: no parity | 1 | 2 |  |  |
| n73 | Modbus Send Waiting Time | 10 to 65 | 1 (msec) | 10 |  |  |
| n74 | Modbus RTS control | 0: RTS control enabled <br> 1: RTS control disabled (RS-422A 1 to 1 communication) | 1 | 0 |  |  |
| n75 | Reduce Carrier at low speed selection | 0: Disabled <br> 1: Carrier Frequency reduced to 2.5 kHz when Fout $<=5 \mathrm{~Hz}$ \& lout $>=110 \%$ | 1 | 0 |  |  |
| n76 | Digital Operator Parameter Copy Function Selection | rdy: READY status <br> rEd: READ executes <br> Cpy: COPY executes <br> vFy: VERIFY executes <br> vA: Inverter capacity display <br> Sno: Software No. display | $\begin{aligned} & \hline \text { rdy } \\ & \text { rEd } \\ & \text { Cpy } \\ & \text { vFy } \\ & \text { vA } \\ & \text { Sno } \end{aligned}$ | rdy |  |  |
| n77 | Digital Operator Parameter Copy Access Selection | 0: Copying disabled <br> 1: Copying allowed | 1 | 0 |  |  |
| n78 | Fault History | Note 2 | N/A | N/A |  |  |
| n79 | Software Number | Note 2 |  | 013 |  |  |

Note 1: Factory setting differs depending on capacity. See Appendix 3-1.
Note 2: $\mathbf{n 7 8}$ and $\mathbf{n 7 9}$ are display only parameters, which are not settable.

## Appendix 2. SPECIFICATIONS

Table A2-1. Standard Specifications

| SECTION A. Model No. Related Specifications |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $230 \text { VAC }$3-Phase | Old Model No. | JDA001 | JDA002 | JDA003 | JDA005 | JDA008 | JDA011 | JDA017 |
|  | New Model No. CIMR-J7AM | 20P10 | 20P20 | 20P40 | 20P70 | 21P50 | 22P20 | 23P70 |
|  | Max. applicable motor output HP (1) | 1/8 | 1/4 | 1/2 | 1 | 2 | 3 | 5 |
|  | Drive capacity (kVA) | 0.3 | 0.6 | 1.1 | 1.9 | 3.0 | 4.2 | 6.7 |
|  | Rated Output Current (A) | 0.8 | 1.6 | 3.0 | 5.0 | 8.0 | 11.0 | 17.5 |
|  | Rated Input Current (A) | 1.1 | 1.8 | 3.9 | 6.4 | 11.0 | 15.1 | 24.0 |
|  | Max. Output Voltage (V) | 200 V to 230 V (proportional to input voltage) |  |  |  |  |  |  |
|  | Max. Output Frequency (Hz) | 400 Hz (programmable) |  |  |  |  |  |  |
|  | Rated Input Voltage and Frequency | three-phase. 200 to $230 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |
|  | Allowable voltage fluctuation | -15\% to +10\% |  |  |  |  |  |  |
|  | Allowable frequency fluctuation | $\pm 5 \%$ |  |  |  |  |  |  |
| 460 VAC <br> 3-Phase | Old Model No. | -- | -- | JDB001 | JDB002 | JDB003 | JDB005 | JDB009 |
|  | New Model No. CIMR-J7AM | -- | -- | 40P20 | 40P40 | 40P70 | 41P50 | 43P70 |
|  | Max. applicable motor output HP (kW) (1) | -- | -- | 1/2 | 3/4 | 2 | 3 | 5 |
|  | Drive capacity (kVA) | -- | -- | 0.9 | 1.4 | 2.6 | 3.7 | 7 |
|  | Rated Output Current (A) | -- | -- | 1.2 | 1.8 | 3.4 | 4.8 | 8.6 |
|  | Rated Input Current (A) |  |  | 1.6 | 2.4 | 4.7 | 7.0 | 13.5 |
|  | Max. Output Voltage (V) | 380 to 460 V (proportional to input voltage) |  |  |  |  |  |  |
|  | Max. Output Frequency (Hz) | 400 Hz (programmable) |  |  |  |  |  |  |
|  | Rated Input Voltage and Frequency | three-phase. 380 to $460 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |
|  | Allowable voltage fluctuation | -15\% to +10\% |  |  |  |  |  |  |
|  | Allowable frequency fluctuation | $\pm 5 \%$ |  |  |  |  |  |  |
| SECTION B. All Models |  |  |  |  |  |  |  |  |
| O00.00.00000000000 | Control method | Sine wave PWM (V/f Control or Open Loop Vector) |  |  |  |  |  |  |
|  | Frequency control range | 0.1 to 400 Hz |  |  |  |  |  |  |
|  | Frequency accuracy | Digital command: $\pm 0.01 \%$ (14 to $122^{\circ} \mathrm{F},-10$ to $+50^{\circ} \mathrm{C}$ ) |  |  |  |  |  |  |
|  | (temperature change) | Analog command: $\pm 0.5 \%\left(77^{\circ} \mathrm{F} \pm 18^{\circ} \mathrm{F}, 25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$ |  |  |  |  |  |  |
|  | Frequency setting resolution | Digital Operator reference: $0.1 \mathrm{~Hz}(<100 \mathrm{~Hz})$ 1 Hz ( 100 Hz or more) |  |  |  |  |  |  |
|  |  | Analog reference: $0.06 \mathrm{~Hz} / 60 \mathrm{~Hz}(1 / 1000)$ |  |  |  |  |  |  |
|  | Output frequency resolution | 0.01 Hz |  |  |  |  |  |  |
|  | Overload capacity | 150\% of rated output current for 1 minute |  |  |  |  |  |  |
|  | Frequency Reference Signal | 0 to 10VDC (20k $\Omega$ ), 4 to $20 \mathrm{~mA}(250 \Omega)$, 0 to $20 \mathrm{~mA}(250 \Omega)$ pulse train input, Digital Operator Pot |  |  |  |  |  |  |
|  | Accel/Decel Time | 0.01 to 6000 sec.(accel/decel time are independently programmed) |  |  |  |  |  |  |
|  | Braking Torque | Short-term average deceleration torque (2)$0.2 \mathrm{~kW}: 150 \%$$0.75 \mathrm{~kW}: 100 \%$$1.5 \mathrm{~kW}: 50 \%$2.2 kW or more: $20 \%$Continuous regenerative torque: Approx. $20 \%$ |  |  |  |  |  |  |
|  | V/f characteristics | Custom V/f pattern |  |  |  |  |  |  |

Table A2-1. Standard Specifications (Continued)

|  |  | SECTION B. All Models (Continued) |
| :--- | :--- | ---: |

## NOTES:

(1) Based on an N.E.C. standard 4-pole motor for max. applicable motor output.
(2) Shows deceleration torque for an uncoupled motor decelerating from 60 Hz in 0.1 seconds.
(3) Contact your Yaskawa representative for wiring distances greater than 328 ft . ( 100 m ).
(4) Temperature during shipping (for short periods of time).

## Appendix 3. CAPACITY RELATED PARAMETERS

The factory setting of certain parameters change with drive rating and control method selected. The following two tables list the parameters and how they change.

Table A3-1. Parameters Related to Capacity

| Old Drive <br> Model No. | New Drive <br> Model No. <br> CIMR-J7AM | $\mathbf{n 3 2}$ | $\mathbf{n 6 4}$ | $\mathbf{n 6 5}$ | $\mathbf{n 4 6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| JDA001 | 20 P 10 | 0.6 | 2.5 | 72 | 4 |
| JDA002 | 20 P 20 | 1.1 | 2.6 | 73 | 4 |
| JDA003 | $20 P 40$ | 1.9 | 2.9 | 62 | 4 |
| JDA005 | $20 P 70$ | 3.3 | 2.5 | 55 | 4 |
| JDA008 | 21 P50 | 6.2 | 2.6 | 45 | 3 |
| JDA011 | $22 P 20$ | 8.5 | 2.9 | 35 | 3 |
| JDA017 | $23 P 70$ | 14.1 | 3.3 | 32 | 3 |
| JDB001 | $40 P 20$ | 0.6 | 2.5 | 73 | 3 |
| JDB002 | $40 P 40$ | 1.0 | 2.7 | 63 | 3 |
| JDB003 | $40 P 70$ | 1.6 | 2.6 | 52 | 3 |
| JDB005 | 41 P50 | 3.1 | 2.5 | 45 | 3 |
| JDB009 | $43 P 70$ | 7.0 | 3.2 | 33 | 3 |

## Appendix 4. PERIPHERAL DEVICES

The following peripheral devices may be required to be mounted between the AC main circuit power supply and the Drive input terminals L1 (R), L2 (S) and L3 (T).


Never connect a general LC/RC noise filter to the drive output circuit.
Never connect a phase-advancing capacitor to the input/output sides or a surge suppressor to the output side of the drive.

When a magnetic contactor is installed between the drive and the motor, never turn it on or off during operation.

For more details on peripheral devices, contact your Yaskawa representative.

- Molded-case circuit breaker (MCCB)

| 230 V Old Drive Model No. | JDA001 | JDA002 | JDA003 | JDA005 | JDA008 | JDA011 | JDA017 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| New Drive Model No. CIMR-J7AM | 20P10 | 20P20 | 20P40 | 20P70 | 21P50 | 22P20 | 23P70 |
| Capacity (kVA) | 0.3 | 0.6 | 1.1 | 1.9 | 3 | 4.2 | 6.7 |
| Rated output current (A) | 0.8 | 1.6 | 3.0 | 5.0 | 8.0 | 11.0 | 17.5 |
| Rated input current (A) | 1.1 | 1.9 | 3.9 | 6.4 | 11.0 | 15.5 | 24.0 |
| MCCB rating (A) | 5 | 5 | 5 | 10 | 20 | 20 | 30 |


| 460 V Old Drive Model No. | JDB001 | JDB002 | JDB003 | JDB005 | JDB009 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| New Drive Model No. CIMR-J7AM | $\mathbf{4 0 P 2 0}$ | $\mathbf{4 0 P 4 0}$ | $\mathbf{4 0 P 7 0}$ | $\mathbf{4 1 P 5 0}$ | $\mathbf{4 3 P 7 0}$ |
| Capacity (kVA) | 0.9 | 1.4 | 2.6 | 3.7 | 7.0 |
| Rated output current (A) | 1.2 | 1.8 | 3.4 | 4.8 | 8.6 |
| Rated input current (A) | 1.6 | 2.4 | 4.7 | 7.0 | 12.0 |
| MCCB rating | 5 | 5 | 5 | 10 | 20 |

- Magnetic contactor

Mount a surge protector on the coil. When using a magnetic contactor to start and stop the drive, do not exceed one start per hour.

- Ground fault interrupter

Select a ground fault interrupter not affected by high frequencies. To prevent malfunctions, the current should be 200 mA or more and the operating time 0.1 second or more.

## - AC and DC reactor

Install a reactor to connect to a power supply transformer of large capacity ( 600 kVA or more) or to improve the power factor on the power supply side.

## - Noise filter

Use a noise filter exclusively for the drive if radio noise generated from the drive causes other control devices to malfunction.

## Appendix 5. J7 DIMENSIONS



| Rated Input | Old Drive Model No. | New Drive Model No. CIMR-J7AM | HorsePower | Dimensions in Inches |  |  |  |  | Weight Lbs. | Heat loss (Watts) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | H | H1 | W | D | W1 |  |  |
| $\begin{gathered} 230 \mathrm{~V} \\ \text { 3-Phase } \end{gathered}$ | JDA001 | 20P10 | 1/8 |  |  |  | 2.76 | 2.20 | 1.3 | 13.0 |
|  | JDA002 | 20P20 | 1/4 |  |  |  | 2.76 | 2.20 | 1.3 | 18.0 |
|  | JDA003 | 20P40 | 1/2 | 5.04 | 4.65 | 2.68 | 4.02 | 2.20 | 2.0 | 28.1 |
|  | JDA005 | 20P70 | $3 / 4$ \& 1 |  |  |  | 4.80 | 2.20 | 2.4 | 45.1 |
| $\begin{gathered} \text { 460V } \\ \text { 3-Phase } \end{gathered}$ | JDB001 | 40P20 | 1/2 |  |  |  | 3.19 | 3.78 | 2.2 | 23.1 |
|  | JDB002 | 40P40 | 3/4 |  |  |  | 3.90 | 3.78 | 2.4 | 30.1 |
|  | JDB003 | 40P70 | 1 \& 2 | 5.04 | 4.65 | 4.25 | 5.08 | 3.78 | 3.3 | 54.9 |
|  | JDB005 | 41P50 | 3 |  |  |  | 6.06 | 3.78 | 3.3 | 75.7 |



| Rated Input | Old Drive Model No. | New Drive Model No. CIMR-J7AM | HorsePower | Dimensions in Inches |  |  |  |  | Weight Lbs. | Heat loss (Watts) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | H | H1 | W | D | W1 |  |  |
| $\left\|\begin{array}{c} 230 \mathrm{~V} \\ 3 \text {-Phase } \end{array}\right\|$ | JDA008 | 21P50 | 2 |  |  | 4.25 | 5.08 | 3.78 | 3.1 | 72.8 |
|  | JDA011 | 22P20 | 3 | 5.04 | 4.65 | 4.25 | 6.06 | 3.78 | 3.3 | 94.8 |
|  | JDA017 | 23P70 | 5 |  |  | 5.51 | 6.34 | 5.04 | 4.6 | 149.1 |
| $\begin{gathered} 460 \mathrm{~V} \\ 3 \text {-Phase } \end{gathered}$ | JDB009 | 43 P 70 | 5 | 5.04 | 4.65 | 5.51 | 6.34 | 5.04 | 4.6 | 117.9 |

## INDEX

## - A -

Acceleration
Accel time 1 ..... 5-2
Accel time 2 ..... 5-2
Hold ..... 5-25
S-curve ..... 5-3
Time setting unit ..... 5-2
Analog monitor output, multi-function ..... 5-19
Auto restart ..... 5-4

- B -
Braking :
DC injection ..... 5-7
- C -
Carrier frequency ..... 5-5
Conformance to European EMC Directive ..... 1-8
Contactors - seePeripheral Devices
Control circuit :
Terminals ..... 1-6
Wiring ..... 1-5
Critical frequency rejection ..... 5-6
Current :
Limit - see Stall Prevention Motor ..... 2-7
Output (IOUT) ..... 4-2
Output (monitor) ..... 4-4
- D -
DATA/ENTER key ..... 4-1
DC injection :
Time at start ..... 5-7
Time at stop ..... 5-7
Deadband, prohibited frequency ..... 5-6
Deceleration :
Decel time 1 ..... 5-2
Decel time 2 ..... 5-2
S-curve ..... 5-3
Time setting unit ..... 5-2
Decrease (v) key ..... 4-1
Diagnostics - see
Troubleshooting
Digital operator ..... 4-1
Dimensions ..... A5-1, A5-2
DSPL key ..... 4-1
- E -
EMC Directive, European, Conformance to ..... 1-9
Enclosure ..... A2-2
Environment ..... 1-1, A2-2
External base block ..... 5-23
- F -
F/R LED ..... 4-2
Fault displays ..... 6-4
Fault history ..... 5-31, A1-5
Faults:
Restart attempts ..... 5-4
FOUT LED ..... 4-2
FREF LED ..... 4-2
Frequency : Detection ..... 5-28
Max. output ..... A2-1
Output (FOUT) ..... 4-2
Output (monitor) ..... 4-4
Frequency reference
Bias (analog) ..... 5-8
Gain (analog) ..... 5-8
Jog ..... 5-12
Limits ..... 5-9
Retention (Up/Down) ..... 5-9
Selection ..... 5-10
- G
Gain :
Analog monitor ..... 5-19
Frequency reference (analog) ..... 5-8
Torque compensation ..... 5-35
Grounding ..... 1-5
- H
Heat loss (watts) ..... A5-1, A5-2
Hold :
Accel/decel ..... 5-21, 5-25
Frequency ref. (retention) ..... 5-9
- I-
Increase (^) key ..... 4-1
Initialize parameters ..... 5-30
Inputs, multi-function ..... 5-20
Inspection (receiving) ..... 1-1
Installation:
Electrical ..... 1-4
Physical ..... 1-1
IOUT LED ..... 4-2


## INDEX (Continued)


Options - see Peripheral
Devices
Outputs:
Analog ..... 5-19
Contact ..... 5-26
Multi-function ..... 5-26
Open collector ..... 5-26
Overtorque detection ..... 5-29
P-
Parameters :
Capacity and control method related ..... A3-1
Listing of ..... A1-1
Reset (initialize) ..... 5-30
Peripheral devices :
AC and DC reactor ..... A4-1
Ground fault interrupter ..... A4-1
Magnetic contactor ..... A4-1
Molded-case circuit breaker (MCCB) ..... A4-1
Noise filter ..... A4-
Potentiometer ..... 4-1
Power loss ride-through ..... 5-28
Power supply ..... A2-1
Pre-power checks ..... 2-1
Preset speeds - seeMulti-step speeds
PRGM LED ..... 4-2
Prohibited frequency deadband ..... 5-6
Protection :
Overcurrent ..... 5-32
Overheat (drive) ..... A2-1
Overtorque ..... 5-29
Overvoltage (decel) ..... 5-32
Thermal overload (mtr) ..... 5-34
Undervoltage ..... A2-2
Protective functions, miscellaneous ..... 5-19

- R -
Rated current, motor ..... 5-34
Ratings ..... , A2-1
Receiving ..... 1-1
Remote reference - see
Local/Remote
Reset codes ..... 5-22
Reverse prohibit ..... 1-10, 1-12
Ride-through ..... 5-19
RUN key ..... 4-1
S-curve ..... 5-3Shock resistance - seeS-curve


## INDEX (Continued)

Slip compensation ..... 5-31
Soft start - see S-curve
Specifications ..... A2-1
Speed:
Coincidence ..... 5-27
Search ..... 5-22
Stall prevention
Accel ..... 5-32
Decel ..... 5-32
During running ..... 5-32
Start-up Procedure ..... 2-2
STOP/RESET key ..... 4-1, 5-13
Stopping method selection ..... 5-33
Switches, internal : SW1 ..... 5-20
SW8 ..... 5-10
Switching frequency - seeCarrier frequency
-T -
Temperature :
Ambient ..... A2-2
Storage ..... A2-2
Terminals .....
1-4, 1-6 .....
1-4, 1-6
Screw sizes
Functions
Functions1-3
5-34
Torque boost ..... 5-35
Torque compensation gain (V/F control) ..... 5-35
Torque detection ..... 5-29
Troubleshooting ..... 6-1

- U -
Up/down function ..... 5-25
- V -
V/f pattern ..... 5-40
Voltage
DC bus (monitor) ..... 4-4
DC bus (stall prev.) ..... 5-32
Max. output ..... A2-1
Output (monitor) ..... 4-4
- W -
Weight ..... A5-1, A5-2
Wiring :
2-Wire control ..... 1-4
3-Wire control ..... 1-4
Auxiliary input and output power option devices ..... 1-7
Conduit ..... 1-7
Control circuit ..... 1-5
Diagrams ..... 1-11, 1-13
Distances ..... 1-4, 1-5, 1-8, A2-2
Main circuit ..... 1-4


It is important to Yaskawa that users of our products have a totally satisfying ownership experience.

Training is one of the most effective ways to ensure that satisfaction. Because of this conviction, Yaskawa has operated a full-time professional training department since 1965.

Yaskawa trainers are full-time instructors, with a wealth of "real-life" product experience gained through field service at customer facilities. This experience, combined with backgrounds in engineering and education, has earned national recognition for Yaskawa's technical training programs.

Courses are conducted at the headquarters training facility, in selected cities, and at customer sites. Courses are available to cover all the issues of concern to product users: application, theory of operation, troubleshooting and repair, adjustment and startup, operation, programming, network communication, and optimizing the functions of Yaskawa drives.

We work hard to make all of our products user-friendly, and our owner manuals easy to use. In spite of that, the simple fact is that you will learn better and faster in a class environment combined with hands-on practice, than by self-teaching when under the stress of a maintenance or operations problem.

## On-Site Training and Customized Courses

Training courses are also provided at the user's site. Course content can be customized to the specific installation and application if requested. For further information about on-site training and courses specific to your installation and application, visit our website at www.drives.com.

## YASKAWA ELECTRIC AMERICA, INC

Drives Division
16555 W. Ryerson Rd., New Berlin, WI 53151, U.S.A.
Phone: (800) YASKAWA (800-927-5292) Fax: (262) 782-3418
Internet: http://www.drives.com
YASKAWA ELECTRIC AMERICA, INC.
Chicago-Corporate Headquarters
2121 Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone: (800) YASKAWA (800-927-5292) Fax: (847) 887-7310
Internet: http://www.yaskawa.com

## MOTOMAN INC.

805 Liberty Lane, West Carrollton, OH 45449, U.S.A.
Phone: (937) 847-6200 Fax: (937) 847-6277
Internet: http://www.motoman.com

## YASKAWA ELECTRIC CORPORATION

New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-0022, Japan
Phone: 81-3-5402-4511 Fax: 81-3-5402-4580
Internet: http://www.yaskawa.co.jp
YASKAWA ELETRICO DO BRASIL COMERCIO LTDA.
Avenida Fagundes Filho, 620 Bairro Saude Sao Paolo-SP, Brasil CEP: 04304-000
Phone: 55-11-5071-2552 Fax: 55-11-5581-8795
Internet: http://www.yaskawa.com.br

## YASKAWA ELECTRIC EUROPE GmbH

Am Kronberger Hang 2, 65824 Schwalbach, Germany
Phone: 49-6196-569-300 Fax: 49-6196-888-301

## MOTOMAN ROBOTICS AB

Box 504 S38525, Torsas, Sweden
Phone: 46-486-48800 Fax: 46-486-41410

## MOTOMAN ROBOTEC GmbH

Kammerfeldstrabe 1, 85391 Allershausen, Germany
Phone: 49-8166-900 Fax: 49-8166-9039

## YASKAWA ELECTRIC UK LTD.

1 Hunt Hill Orchardton Woods Cumbernauld, G68 9LF, Scotland, United Kingdom
Phone: 44-12-3673-5000 Fax: 44-12-3645-8182

## YASKAWA ELECTRIC KOREA CORPORATION

Paik Nam Bldg. 901 188-3, 1-Ga Euljiro, Joong-Gu, Seoul, Korea
Phone: 82-2-776-7844 Fax: 82-2-753-2639
YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
Head Office: 151 Lorong Chuan, \#04-01, New Tech Park Singapore 556741, Singapore
Phone: 65-282-3003 Fax: 65-289-3003
TAIPEI OFFICE (AND YATEC ENGINEERING CORPORATION)
10F 146 Sung Chiang Road, Taipei, Taiwan
Phone: 886-2-2563-0010 Fax: 886-2-2567-4677

## YASKAWA JASON (HK) COMPANY LIMITED

Rm. 2909-10, Hong Kong Plaza, 186-191 Connaught Road West, Hong Kong
Phone: 852-2803-2385 Fax: 852-2547-5773

## BEIJING OFFICE

Room No. 301 Office Building of Beijing International Club,
21 Jianguomanwai Avenue, Beijing 100020, China
Phone: 86-10-6532-1850 Fax: 86-10-6532-1851

## SHANGHAI OFFICE

27 Hui He Road Shanghai 200437 China
Phone: 86-21-6553-6600 Fax: 86-21-6531-4242
SHANGHAI YASKAWA-TONJI M \& E CO., LTD.
27 Hui He Road Shanghai 200437 China
Phone: 86-21-6533-2828 Fax: 86-21-6553-6677
BEIJING YASKAWA BEIKE AUTOMATION ENGINEERING CO., LTD.
30 Xue Yuan Road, Haidian, Beijing 100083 China
Phone: 86-10-6232-9943 Fax: 86-10-6234-5002
SHOUGANG MOTOMAN ROBOT CO., LTD.
7, Yongchang-North Street, Beijijng Economic \& Technological Development Area,
Beijing 100076 China
Phone: 86-10-6788-0551 Fax: 86-10-6788-2878
YEA, TAICHUNG OFFICE IN TAIWAIN
B1, 6F, No.51, Section 2, Kung-Yi Road, Taichung City, Taiwan, R.O.C.
Phone: 886-4-2320-2227 Fax:886-4-2320-2239

